This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

# Cobalt-59 Nuclear Magnetic Resonance Spectroscopy in Coordination

**Chemistry** Akira Yamasaki<sup>a</sup>

<sup>a</sup> Laboratory of Inorganic Chemistry, Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo, Japan

To cite this Article Yamasaki, Akira(1991) 'Cobalt-59 Nuclear Magnetic Resonance Spectroscopy in Coordination Chemistry', Journal of Coordination Chemistry, 24: 3, 211 – 260 To link to this Article: DOI: 10.1080/00958979109407886 URL: http://dx.doi.org/10.1080/00958979109407886

# PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## COBALT-59 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY IN COORDINATION CHEMISTRY

## AKIRA YAMASAKI\*

Laboratory of Inorganic Chemistry, Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu, Tokyo 182, Japan

The current status of cobalt-59 NMR spectroscopy is reviewed including historical perspectives and application to various areas of coordination chemistry. Chemical shift data are summarized and tabulated for about 800 complexes from values in the literature and our experimental data. Spin-spin coupling constants are also collected for 20 nuclear pairs.

## Keywords: Cobalt-59, NMR

## 1. HISTORICAL

Among the numerous non-zero spin nuclei, cobalt-59 has an important and somewhat characteristic role in the history of nuclear magnetic resonance (NMR).<sup>1-4</sup> In the early stages of NMR (soon after the first discoveries of NMR spectra in 1945), many physicists had eagerly tried to determine the gyromagnetic ratios of various nuclei. The most important report was that of Proctor and Yu,<sup>5</sup> who measured the gyromagnetic ratios of several cobalt(III) complexes with many other nuclei in 1951. They reported that remarkably large differences in gyromagnetic ratios were observed for several tervalent cobalt complexes. This difference in gyromagnetic ratios was named the "chemical shift", but the relative magnitude is about one thousand-times larger than those of protons. Proctor and Yu reported several very important phenomena for cobalt-59 NMR: (a) The range of differences of the gyromagnetic ratios is exceedingly large (almost 1% or much larger). (b) The trend of the increase of gyromagnetic ratio is approximately parallel to the instability of cobalt(III) complexes. (c) The temperature dependence of the gyromagnetic ratio was fairly large in these cobalt complexes and, (d) Doublet spectra were observed for sodium hexanitrocobaltate(III) complex in aqueous solution.

They proposed very important explanations for these differences in gyromagnetic ratios for cobalt-59, namely

- (1) The existence of low-lying excited states.
- (2) Rapid transitions between the ground state and the above mentioned excited states.
- (3) The temperature-sensitive changes in the populations of ground and excited states.
- (4) The large difference of shielding constants between the ground and excited states.

Their suggestions seem to be somewhat speculative, but much of them became the foundations for later theoretical treatment of chemical shifts and applications to coordination chemistry.

<sup>\*</sup> Author for correspondence.

There are more than one hundred papers which contain cobalt-59 NMR data, and several relating parameters have been obtained from the NMR spectra of other nuclei, or nuclear quadrupole resonance spectroscopy. The literature compilation<sup>1-128</sup> is shown at the end of this review from the first observations of Proctor and Yu through to the end of 1987.

Although there are several good reviews of cobalt-59 NMR,<sup>1-4</sup> we have found that they contain occasionally some incorrect descriptions which exist mainly in the original papers (erroneous samples, miscalculations, false assignments of coexisting impurity signals, etc.) even in those reported by several famous scientists, and a critical viewpoint should be taken in compiling trustable data collection. We have tried to reexamine the earlier reported data where possible, and to construct a reliable database for cobalt-59 NMR spectroscopy.

## 2. CHEMICAL SHIFT

## 2.1. Griffith-Orgel Plot

In 1957, Griffith and Orgel<sup>7</sup> gave a valuable explanation of the chemical shift of cobalt-59 based on Proctor and Yu's data. Surprisingly good correlation was observed for the chemical shift and wavelengths of the "first absorption maxima", namely reciprocals of the energy difference of the 3d electronic orbitals. The explanation was based on the second-order paramagnetic contribution to the chemical shift by applying simple crystal-field theory. The chemical shift can be divided into diamagnetic ( $\sigma_d$ ) and paramagnetic ( $\sigma_p$ ) terms as in the following:

$$\sigma = \sigma_{d} + \sigma_{p}$$

$$\sigma_{d} = (e^{2}/2mc^{2}) \sum_{k} (\langle \psi_{0} | (\Sigma(x_{k}^{2} + y_{k}^{2})/r_{k}^{3}) | \psi_{0} \rangle)$$

$$\sigma_{p} = (e^{2}/m^{2}c^{2}) \sum_{n} (\langle \psi_{0} | \sum_{k} m_{zk} | \psi_{n} \rangle \langle \psi_{n} | (\sum_{k} m_{zk}/r^{3}) | \psi_{0} \rangle / (E_{n} - E_{0}))$$

where the symbols are used as ordinary notations.

The dominant term in the paramagnetic terms can be assumed to be the lowest excited state, namely the energy difference in the paramagnetic term is the smallest one. This corresponds to the d-d splitting, which is usually called CFSE (crystal field splitting energy) or LFSE (ligand field splitting energy) in the low-spin type 3d<sup>6</sup> complexes, which are approximately expressed as the reciprocals of the so-called first absorption maxima.

Chemical shifts can be expressed by the following simplified equations:

$$\sigma = A - B/\Delta = A - B\lambda$$

This means the magnitude of chemical shifts can be correlated with the spectrochemical series, and the observed cobalt-59 chemical shift data supported this theoretical treatment. By this approximation, the assumptions introduced by Proctor and Yu seem unnecessary in explaining the chemical shift data. Soon after their results were published, Freeman, Murray and Richards<sup>8</sup> reported the chemical shift

#### COBALT-59 NMR

for 14 cobalt(III) complexes. The chemical shift/wavelength of the first absorption maxima plot (Griffith-Orgel plot) was successfully applied to explain their chemical shift data. (Therefore, some researchers have called this plot FMR). This seems to have made a significant impression on many chemists who have been studying heteronuclear NMR, and many reports for heteronuclear NMR contain figures in which the chemical shifts are plotted against wavelengths of the absorption maxima of samples, but the correlation does not seem as good as with cobalt-59 NMR.

The contribution of the higher order paramagnetic term is expected to produce a field-dependent chemical shift. This field dependence is usually negligibly small but it might possibly be observed for nuclei which show a large chemical shift range, and the high-field NMR raises the chemical shift difference frequency. Bendall and Doddrell<sup>67</sup> reported the existence of a small change in chemical shifts for [Co(acac)<sub>3</sub>] and [Co(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup> between the two resonant fields (2.1 T and 0.3 T). However, the direction was opposite to expectation. The reason for this phenomenon still remains unclear.

## 2.2. Effect of Electron Cloud Expansion

Deviation from a straight correlation between the chemical shift and the first absorption maxima was pointed out firstly by Kanekar and his group<sup>17</sup> for complexes with sulfur-donor ligands, such as dithiocarbamate, xanthate and dithiophosphates. Similar results have also been reported by Yamasaki, Yajima, Fujiwara.<sup>22</sup> These deviations are also observed for complexes which have "soft" ligand atoms such as phosphorus,<sup>61,78,118</sup> selenium,<sup>115</sup> arsenic<sup>118</sup> and antimony.<sup>124</sup>

The theoretical treatment of the electronic spectra for these complexes is included in the "nephelauxetic effect", or electron cloud expansion effect for "soft" ligands. The values of the angular contribution  $(m_{zk}'/r^3)$  in the Griffith–Orgel approximation for complexes with relatively soft ligand atom groups are assumed to be much different from those of the relatively hard ligand atom groups. The different linear relationships in the Griffith–Orgel plot are well established for these ligand atom groups.

The nephelauxetic constant (orbital reduction factor) was introduced to overcome these complexities by Fujiwara<sup>24</sup> and more precisely by Juranic,<sup>86</sup> and a good relationship was obtained for a wide variety of complexes including many soft ligand atoms.

Juranic later claimed that a different slope  $(\sigma/\lambda)$  should be applied for each CoL<sub>6</sub> type complex for different L (N, O, C, P, S etc.).<sup>105</sup>

The magnitude of the gradient  $\sigma/\lambda$  (=chemical shift/wavelength of the first absorption maxima) in the Griffith-Orgel plot enables us to extend the possibilities of cobalt-59 NMR to many different fields in inorganic chemistry. The small differences in electronic states have been customarily characterized by the visible-ultraviolet absorption spectroscopy (d-d transitions). Of course the "diffuse" bands have prevented discrimination of small differences. The magnitude of the ratio is fairly large ca. 30 ppm/nm for complexes of CoN<sub>x</sub>O<sub>6-x</sub> series), and the many small differences in the electronic states can be easily detected, such as solvation shift (medium effect), temperature dependence, ionic association, and discrimination of isotopomers.

The precision of chemical shift measurement of cobalt-59 is about 0.05 ppm for sharp spectra such as in tetracarbonyl- cobaltate(-I) or hexacyanocobaltate(III) using modern NMR spectrometers. This corresponds to a difference of  $\lambda_{1max}$  in the

order of 1 pm(!). In the case of broader spectra such as for hexaamminecobalt(III) or tris(ethylenediamine)-cobalt(III) complexes, it is very easy to determine exactly chemical shift differences in the order of 1 ppm. This sensitivity of cobalt-59 NMR enables us to analyze many subtle effects on the surroundings of the cobalt nucleus much more easily than by the customary electronic spectral measurements.

# 3. EMPIRICAL RULES OF CHEMICAL SHIFT OF OCTAHEDRAL COBALT(III) COMPLEXES

The prediction and estimation of chemical shifts seems to be valuable in applying cobalt-59 NMR to the characterization of various complexes. As direct estimation from the magnetic susceptibility has been tried by Indian research groups,<sup>88</sup> their trials seem to be qualitatively good for a relatively small number of complexes. Simple empirical rules for chemical shifts were established by Yajima, Koike, Yamasaki and Fujiwara<sup>51</sup> for various  $[Co(en)_x(NH_3)_{6-2x-y}L_y]$  type complexes.

More precise estimations of chemical shifts have been tried by Juranic and his co-workers with consideration of lowering coordination symmetry<sup>71-73</sup> for the  $CoN_xO_{6-x}$  series. Au-Yeung and Eaton<sup>93</sup> extended the prediction of chemical shifts with trans-ligand pairs. Their estimation of chemical shifts and line width parameters of each ligand is consistent with the experimental and literature data. Their ligand parameters for chemical shift estimations express the "absolute chemical shift" namely that from the naked cobalt-59 nucleus. Although the uncertainty of absolute gyromagnetic ratio in the literature results in some abiguities, their estimation seems the most reasonable in covering the variety of chemical shifts of most octahedral cobalt(III) complexes. There must be some changes if a different gyromagnetic ratio is introduced, but it seems less important in the estimation of various cobalt complexes.

Nishizawa<sup>59</sup> tried to predict the cobalt-59 chemical shifts by cis-ligand pair parameters for various complexes, but there were severe deviations without the consideration of trans-pair parameters.

Another theoretical estimation was proposed by Bramley and his co-workers<sup>113</sup> with ligand field parameters. Their detailed study for twenty complexes of relatively high symmetry has elucidated the clear relationships between chemical shift and the spectrochemical parameter ( $\Delta$ ) and the Racah parameter (nephelauxetic ratio,  $\beta$ ).

These theoretical explanations seem very interesting, but the generalization of such treatments to a wide range of mixed ligand complexes of lower symmetry is thought to be very hard and probably, the introduction of many other parameters will be necessary.

The estimation of the gyromagnetic ratio of the "naked" cobalt-59 nucleus, namely the origin of absolute chemical shift, has also been an important topic in the nuclear physics area. In the early stages of cobalt-NMR study, Walstedt, Wernick and Jaccarino<sup>20</sup> determined the gyromagnetic ratio  $10.054 \pm 0.02$  MHz/T from the NMR of solid cobalt silicides. From solid cobalticenium nitrate, Spiess, Haas and Hartmann<sup>26</sup> obtained a very different value, 10.035 MHz/T.

By the extrapolation of the Griffith-Orgel plot of the  $\lambda_{1max}$  to zero (namely,  $\Delta$  is infinitely large), the gyromagnetic ratio of the naked cobalt-59 nucleus can be estimated and the "absolute" gyromagnetic ratio of cobalt-59 can be determined. This estimation was carried out by Betteridge and Golding,<sup>23</sup> Fujiwara<sup>24</sup> and others. This extrapolated value from CoN<sub>6</sub> and CoO<sub>6</sub> complexes (10.015 MHz/T)<sup>24</sup> was

nearly the same as those obtained from the single crystal study by Spiess.<sup>26</sup> Another estimation by Bramley<sup>113</sup> obtained the gyromagnetic ratio 10.048 MHz/T).

However, wide-range extrapolation causes, inevitably, marked lowering of the precision of these estimations. Moreover, the estimated values from the complexes containing relatively soft ligand atoms such as phosphorus, sulfur and selenium do not coincide with the values obtained from the  $CoN_6$ , and  $CoO_6$  series. The introduction of the exact nephelauxetic constants seems necessary.

Juranic<sup>86,97</sup> tried to estimate the gyromagnetic ratio of naked cobalt-59 with a different ligand grouping of higher symmetry, and obtained a value which is approximately equal to those obtained from solid cobalt silicides<sup>20</sup> by Walstedt rather than those reported by Spiess,<sup>26</sup> and much different from the values obtained using the normal Griffith–Orgel plot. From the consistency of the extrapolated value of each limited CoL<sub>6</sub> type complex, Juranic's gyromagnetic ratio seems more reasonable than the values customarily obtained from simple Griffith–Orgel plots.

## 4. EXPRESSION OF CHEMICAL SHIFT DATA

Customarily, the aqueous solution of potassium hexacyanocobaltate(III) has been recommended and widely used as a standard substance, and the high frequency side shift (low-field shift) is denoted as positive.<sup>1-4</sup> Several secondary standard substances have been proposed and used in many papers, for instance, tris(ethylene-diamine)cobalt(III) cation, hexaamminecobalt(III) cation, and tris(acetylaceto-nato)cobalt(III) (in chloroform), because of the remarkably large distribution of chemical shifts among various complexes. Some authors used aqueous sodium hexanitrocobaltate(III), but there are some unclarified problems in the state of this complex species in aqueous solutions (see later), and it is therefore not recommended for use as a standard, although it has good water solubility and is readily obtained from many commercial sources.

The definition of chemical shifts containing the resonant frequency of a standard substance is as follows.

$$\sigma = (\gamma - \gamma_0)/\gamma_0$$
 or  $= (\nu - \nu_0)/\nu_0$ 

However, many chemical shift measurements have been carried out at a constant frequency (field sweep) as noted above. In this case, chemical shifts are usually expressed as follows:

$$\sigma' = (\Delta H/H) = (H_s - H_0)/H_0 = (\gamma - \gamma_0)/\gamma$$

This  $\sigma'$  is not exactly equal to the above  $\sigma$  value, because the difference between the resonant frequencies of standard and sample cannot be neglected in nuclei in the large chemical shift range. This means that conversion of chemical shift data by simple addition-subtraction possibly causes too significant errors for detailed discussions.

There are almost 20 sets of chemical shift data for the hexaamminecobalt(III) complex, which seem to be divided into two groups, one has a value around 8100 ppm, and another 8170 ppm. The former data were obtained from field-sweep (constant frequency) measurements ( $\sigma$ ), and the latter from FT-NMR measurements or resonant frequency measurements ( $\sigma$ ). This inconsistency disappears almost



#### COBALT-59 NMR

perfectly with the conversion of  $\sigma'$  to  $\sigma$ . After this conversion, the mean value of the chemical shift is 8173 ppm with a standard deviation of 3 ppm. (With the exclusion of two extreme values, the standard deviation becomes only 1 ppm).

This consistency seems surprisingly good, because the chemical shift of cobalt(III) complexes is known to be dependent on temperature, pressure, and concentrations.

The chemical shift difference between hexacyanocobaltate(III) and tris(ethylenediamine)cobalt(III) is fairly large (7143 ppm), and it is necessary to select another secondary standard substance whose chemical shift situates around 3500 ppm. One of the candidates is *fac*-tricyanotriamminecobalt(III) (3314 ppm),<sup>93</sup> but its limited solubility and the difficulties of obtaining it from commercial sources have prevented its extended use. (The preparation of this complex is not as simple as for other popular complexes.)

The conversion of chemical shift data among the different standard substances is usually carried out by the addition-subtraction of chemical shift differences of each standard, as in the following

 $\sigma([Co(en)_3]^{3^+}) = \sigma([Co(CN)_6]^{3^-}) - 7145 \text{ (ppm)}$   $\sigma([Co(NH_3)_6]^{3^+}) = \sigma([Co(CN)_6]^{3^-}) - 8173 \text{ (ppm)}$  $\sigma([Co(acac)_3]) = \sigma([Co(CN)_6]^{3^-}) - 12625 \text{ (ppm)}$ 

If a more accurate conversion is needed, the above equations should be rewritten as follows, because the resonant conditions of the secondary standards cannot be assumed to be approximately equal to that of hexacyanocobaltate(III).

 $\sigma([\text{Co(en)}_3]^{3^+}) = \{\sigma([\text{Co(CN)}_6]^{3^-}) - 7145\}/1.007145 \text{ (ppm)} \\ \sigma([\text{Co(NH}_3)_6]^{3^+}) = \{\sigma([\text{Co(CN)}_6]^{3^-}) - 8173\}/1.008173 \text{ (ppm)} \\ \sigma([\text{Co(acac)}_3]) = \{\sigma([\text{Co(CN)}_6]^{3^-}) - 12625\}/1.012625 \text{ (ppm)} \}$ 

The continuous-wave (CW) NMR spectral measurements have also been used throughout NMR history because the large difference of spectral line widths of cobalt-59 NMR is not necessarily favourable to FT measurements. Field-sweep measurements are usually applied to record the spectra in these CW measurements. The chemical shift data obtained from this field-sweep method should be different from the FT measurements, because the variation of chemical shift of cobalt-59 is much larger than for protons. Therefore, caution must be taken when comparing with other data.

The order of difference in many cobalt(III) complexes becomes one percent or less. In other words, the wide range distribution of chemical shift results in a significant bias from the difference of resonance condition of each standard substance. Moreover, recent pulsed Fourier-transform type NMR spectrometers can usually calculate the chemical shift value as the ratio of frequency difference against the frequency of pulse oscillators which is usually settled outside of the recording spectral range by built-in microcomputers. Therefore, machine-calculated chemical shift data on spectral charts cannot be directly accepted if detailed chemical shift data are necessary to the discussions.

To overcome these difficulties, a gyromagnetic ratio expression was recommended by Bramley and his groups.<sup>113</sup> This seems to be the revival of the first expression used by Proctor and Yu,<sup>5</sup> Freeman, Murray and Richards,<sup>7</sup> or Martin and White.<sup>25</sup> Modern NMR spectrometers have good stability of magnetic fields and resonant

frequencies. The gyromagnetic ratios of hexacyanocobaltate(III) complex calculated from the different measurements seem consistent with each other (10.1058  $\pm$  1 MHz/ T), although they contain most of the earlier measurements (see Table 1). Therefore, it seems the most effective notations to eliminate the conversion errors. However, there are some significant deviations (or biases) in Bramley's data (10.1020), which might be attributed to instrumental origin, because their chemical shift data seem to be consistent with others obtained from independent origins. (The gyromagnetic ratio 10.1060 was obtained for hexacyanocobaltate(III) from our earlier measurements, but this is not accurate as we did not intend its use in this type of chemical shift expression.)

| Complex                                    | gyromagnetic ratio (MHz T <sup>-1</sup> ) |  |
|--------------------------------------------|-------------------------------------------|--|
| $[C_0(CN)_6]^{3-}$                         | 10.1058 ± 1                               |  |
| $[Co(en)_3]^{3+}$                          | $10.1779 \pm 1$                           |  |
| $[Co(NH_3)_6]^{3+}$                        | $10.1883 \pm 3$                           |  |
| [Co(acac) <sub>3</sub> ]/CDCl <sub>3</sub> | $10.2338 \pm 1$                           |  |
| $[Co(C_2O_4)_3]^{3-}$                      | $10.2371 \pm 3$                           |  |

 TABLE 1. Gyromagnetic ratio expression of several cobalt(III) complexes (often recommended as standard substances).

On the other hand, the accurate determination of only slight differences can be useful for medium effect studies, stereoisomers or isotopomer discrimination. For these purposes, the above "absolute" expression is unnecessary and inconvenient. The use of secondary standards would be a much better method. The complexes in Table 1 are recommended as the conventional secondary standards, which have relatively reproducible chemical shift (or gyromagnetic ratio) values in various different works.

## 5. LINE WIDTH

Earlier reports were mainly focussed on determining chemical shift data, and the spectrometers were not sufficient in obtaining reliable line-width data for the widely varying line widths. Therefore, impure samples occasionally caused erroneous assignments, because the coexistent species of narrower line widths are usually more easily determined than those of wider line widths especially by CW type spectrometers. Many cobalt(III) complexes are not easily purified without careful recrystallization or chromatographic separation, although the standard processes were summarized in the early decades of this century. The first collection of line-width data for cobalt-59 NMR was probably carried out by Hartmann and Sillescu.<sup>11</sup>

The NMR line widths of cobalt-59 can be affected by the following paragraphs, (i) dipolar relaxation, (ii) quadrupolar relaxation, (iii) broadening by scalar coupling, (iv) exchange reactions, and (v) chemical shift anisotropy.

Almost all low-spin type cobalt(III) complexes are so-called "substitution-inert", namely the ligand exchange rates for these complexes have a much smaller effect on NMR line shape than for any other metal complexes. Therefore, this ligand exchange contribution should be neglected in cobalt-59 NMR spectroscopy. Dipolar relaxation should be considered for samples in the solid state, but is not so important in the liquid states or when in solution.

#### COBALT-59 NMR

Signal splitting by scalar coupling can be effective for complexes which have ligand atoms of non-zero spin, such as carbon-13, nitrogen-14,15, oxygen-17 and so on. However, these spin-spin couplings between cobalt-59 and these nuclei have been only rarely observed because of their low natural abundance or quadrupolar relaxation of the ligand nuclei which have lower symmetry and large field gradients, although several INDOR experiments revealed the existence of scalar couplings in relatively high symmetric complexes.<sup>66</sup>

Therefore, the most dominant factor of line-broadening of the diamagnetic cobalt-59 NMR spectra should be quadrupolar relaxation, and there is much experimental data to confirm this hypothesis. The quadrupolar relaxation is largely dependent on the electric field gradient at the central cobalt nucleus, which reflects mainly the symmetry of the ligand atom combination and configurations. Of course there are several exceptional cases which will be discussed later.

The quadrupolar relaxation rate,  $R_q$ , is expressed in the case of extreme narrowing with an axial electric field gradient (efg) as follows:

$$R_{\rm q} = (3/40)\{(2I+3)/[I^2(2I-1)]\}(e^2Qq/h)\tau_{\rm E}$$

where eQ is the nuclear quadrupole moment,  $\tau_E$  is the reorientational correlation time for the electric field gradient (efg), and eq is the electric field gradient (efg) at the observed nucleus.

The magnitude of the electric field gradient at the cobalt-59 nucleus plays a dominant role in the determination of spectral shape. Simple point-charge or point-dipole model calculations give the wide variety of relative magnitudes of electric field gradients for binary mixed ligand complexes, which are shown in Figure 2. Facial  $CoA_3B_3$  type complexes have a zero field gradient and the line widths for these complexes are usually much narrower than those of meridional isomers. These simple models were introduced by Yamasaki<sup>22</sup> for about 30 complexes for the first time, but it has been proved to be valid for a vast number of cobalt complexes of different classes since then. More detailed estimations were also carried out by Au-Yeung and Eaton<sup>93</sup> for  $CoA_aB_bC_cD_d$ -type complexes (a + b + c + d = 6).

The magnitude of efg seems largely dependent on the combination of ligand atoms and less on the ligand groups. The  $CoN_6$  type complexes usually show smaller line widths than the other  $CoN_xL_{6-x}$  type complexes. Only the hydroxo-ammineethylenediamine mixed complexes showed relatively narrow spectra,<sup>34,39</sup> in spite of the ligand atom combination of  $CoN_xO_{6-x}$ .

Of course there are some exceptional cases which show relatively large line widths in spite of higher ligand atom symmetry such as with  $\text{CoP}_6$ .<sup>78,125</sup> The larger line widths for these phosphite complexes can be attributed to the increase of electric field gradients from the distortion of the nearest configuration of ligand atoms by the repulsion between bulky groups attached on phosphorus atoms.

Some dioxygen complexes have been reported to show remarkable line width change with resonant field strengths.<sup>93-95</sup> This is an interesting and peculiar characteristic suggesting the existence of another mechanism determining the cobalt-59 relaxation rates.

Chemical shift anisotropy has been the main interest of single crystal NMR study for several cobalt(III) complexes. The differences between  $\sigma_{zz}$  and  $\sigma_{xx}$ ,  $\sigma_{yy}$  are of minor contribution to line widths in the relatively low-field NMR measurements. Spectral measurements with superconducting magnets revealed the importance of chemical shift anisotropy on the complexes of lower-symmetry.



FIGURE 2. The structure and relative electric field gradients (efg) of the typical binary complexes of the<br/>type  $CoA_xB_{6-x}$ .<sup>22</sup> The relative efg are estimated as follows:<br/>  $CoA_6$ ,  $CoB_6$ , fac- $CoA_3B_3$ 0<br/>CoA\_5B,  $CoAB_5$ , cis- $CoA_4B_2$ , cis- $CoA_2B_4$ 2<br/>mer-CoA\_3B\_3mer-CoA\_3B\_33<br/>trans-CoA\_4B\_2, trans-CoA\_2B\_44

#### COBALT-59 NMR

For the  $CoA_xB_{6-x}$  series, the symmetric  $CoA_6$  and  $CoB_6$  type complexes and *facial*  $CoA_3B_3$  type complexes show only weak field dependence on line width. A relatively large field dependence was observed in the case where the sites of two ligands were largely distant in the spectrochemical series. The line widths of *meridional*-tricyanotriamminecobalt(III) complex show remarkable field dependence, on the other hand, *facial*-tricyanotriammine(III) complex does not show a clear change even at 94 MHz.<sup>95</sup>

In the Table 1, the cobalt-59 chemical shift and line width data are summarized for typical complexes which were exactly expressed by gyromagnetic ratio. These complexes can be used as chemical shift standards. The spectral data for other complexes of cobalt(III) are shown in Table 2 according to the increase of chemical shift values (low-field shifts).

## 6. IDENTIFICATION OF ISOMERS

#### 6.1. Geometrical Isomer

Geometrical isomers of the cobalt(III) complexes have been familiar from the early stages of coordination chemistry, and the difference in chemical shifts had been pointed out previously in the early stages of cobalt NMR,<sup>7,8,22</sup> for cis-trans isomeric pairs.

The cobalt-59 NMR line widths are clearly dependent on the quadrupolar relaxation as noted above. This quadrupolar relaxation rate reflects the electric field gradient at the central cobalt nucleus in these complexes. The electric field gradient can be estimated from the ligand atom configuration as shown above. From calculation using the point charge model, *facial* CoA<sub>3</sub>B<sub>3</sub>-type complexes would have zero electric field gradients, but the *meridional* CoA<sub>3</sub>B<sub>3</sub> isomers would have non-zero field gradients. Moreover, the electric field gradient of the *trans* isomers of CoA<sub>4</sub>B<sub>2</sub> type complexes should be much larger than those of the *cis* isomers.<sup>22</sup> (see Fig. 2).

Therefore, this rule holds almost all *cis-trans* isomer pair discriminations,<sup>22</sup> although there are a few exceptions such as  $[Co(en)_2(OH)_2]^+$ . Tarasov and his groups have studied the considerably large number of diethylenetriamine (dien) complexes of the type  $Co(dien)X_3$  and the *mer-fac* isomer pairs showing analogous trends throughout their study.<sup>101</sup>

More general treatment of electric field gradient estimation for isomeric pairs was carried out by Au-Yeung and Eaton<sup>93</sup> from  $CoA_6$  to  $CoA_aB_bC_cD_d$  (a+b+c+d=6) as cited above. Their estimated values are qualitatively so consistent with much of the reported data as to discriminate isomeric pairs, but there are some inconsistencies which should be precisely re-examined by modern instruments with more reliable samples than used in these early studies.

### 6.2 Linkage Isomer

It has been long known that there are many linkage isomer pairs in cobalt(III) complexes, such as nitrito-nitro, or thiocyanato-isothiocyanato complexes. The identification of these isomer pairs can be easily accomplished by cobalt-59 NMR as well as infrared spectroscopy. The earliest trial to discriminate between these isomer pairs by cobalt-59 NMR was carried out in 1967.<sup>19</sup> The differences in the ligand atom configuration are usually concluded from the chemical shift and line-width data.<sup>93,101</sup>

Downloaded At: 18:05 23 January 2011

| Complex                                        | Gamma(Co) | σ(1) | Lit. No. |
|------------------------------------------------|-----------|------|----------|
| $[Co(CN)_{6}]^{3-}$                            | 10.1020   | 0    | 113      |
| $[C_0(CN)_6]^{3-1}$                            | 10.1037   | 0    | 5        |
| [Co(diars)] <sup>3+</sup>                      | 10.1050   | -100 | 97       |
| $[Co(CN)_{6}]^{3-}$                            | 10.1057   | 0    | 25       |
| $[C_0(CN)_6]^{3-1}$                            | 10.1057   | 0    | 7        |
| [Co(CN) <sub>6</sub> ] <sup>3-</sup>           | 10.1060   | 0    | 86       |
| $[Co(CNO)_{6}]^{3-}$                           | 10.1190   | 1300 | 97       |
| $[Co(NH_3)_3(CN)_3], mer-$                     | 10.1356   | 3326 | 113      |
| $[Co(NH_3)_4(CN)_2]^+$ , cis-                  | 10.1530   | 5049 | 113      |
| $[Co(dmgH)_{3}]^{3+}$                          | 10.1550   | 4880 | 97       |
| $[Co(triarsine)_2]^{3+}$ , (*)                 | 10.1552   | 4902 | 25       |
| $[Co(triarsine)_2]^{3+}$ , (*)                 | 10.1602   | 5398 | 25       |
| $[Co(S,CBz)_{1}]$                              | 10.1650   | 5830 | 97       |
| $[Co(S,COEt)_3]$                               | 10.1658   | 6316 | 113      |
| $[Co(tacn)_{7}]^{3+}$                          | 10.1666   | 6394 | 113      |
| [Co(S,COEt)]                                   | 10.1684   | 6208 | 25       |
| [Co(S,COMe)]                                   | 10.1690   | 6250 | 97       |
| [Co(S,COEt),]                                  | 10.1690   | 6234 | 86       |
| $[Co(S,CO(i-Pr))_{1}]$                         | 10.1695   | 6319 | 25       |
| $[C_0(NH_1), CN]^{2+}$                         | 10.1695   | 6681 | 113      |
| $[C_0(S_2CS)_3]^{3-1}$                         | 10.1700   | 6390 | 97       |
| $[Co(S_1CN(Me)_1)_1]$                          | 10.1734   | 6704 | 25       |
| $[Co(Se_{\bullet}CN(Me)_{\bullet})_{\bullet}]$ | 10.1739   | 6759 | 25       |
| $[Co(en), ]^{3+}$                              | 10 1742   | 7147 | 113      |
| $[Co(NH_a)_a(NO_a)_a]^-$ , trans-              | 10.1759   | 6950 | 7        |
| $[Co(tame)_{3}]^{3+}$                          | 10.1770   | 7424 | 113      |
| $[Co(S_*C_{(nvr)})_{i}]$                       | 10 1772   | 7074 | 25       |
| $[Co(en), 1^{3+}]$                             | 10 1774   | 7300 | 5        |
| $[Co(en), Cl_{2}]^{+}$ , trans- (*)            | 10 1775   | 7109 | 7        |
| $[Co(en)_{2}CO_{2}]^{+}$ (*)                   | 10 1778   | 7131 | 7        |
| $[Co(en), ]^{3+}$                              | 10.1779   | 7144 | 25       |
| $[C_0(e_n), 1^{3+}]$                           | 10 1780   | 7124 | 86       |
| $[C_0(en), 1^{3+}]$                            | 10 1782   | 7177 | 7        |
| $[Co(NH_{2}),(NO_{2}),]^{+}$ trans-            | 10.1784   | 7199 | 7        |
| $[C_0(NO_1)_1]^3 - (**)$                       | 10.1785   | 7400 | 5        |
| $[Co(nn), ]^{3+}$ (isomer mixture)             | 10.1787   | 7220 | 7        |
| $[C_0(S,CNH_1)]$                               | 10 1788   | 7231 | 25       |
| $\left[C_{0}(S_{1}C_{1})\right]$               | 10.1790   | 7231 | 86       |
| $[C_0(NH_1), (NO_1)_1]^+$ cis-                 | 10.1794   | 7290 | 7        |
| $[C_0(N(O_1)_1)^{3-} (**)]$                    | 10.1209   | 7230 | 25       |
| $[C_0(NO_2)_{6}]$ (**)                         | 10.1814   | 7490 | 25       |
| $[C_0(NH_1), (S_1O_1)]^+$                      | 10.1840   | 8117 | 113      |
| $(C_0(NH_3)S(S_2O_3))$                         | 10.1846   | 8177 | 113      |
| $[C_0(NH_1)]^{3+}$                             | 10.1840   | 8206 | 113      |
| $[C_0(N(\Omega_3)_6]]$                         | 10.1855   | 8100 | 5        |
| $[C_0(NH_1), NCS]^{2+}$                        | 10.1863   | 8345 | 113      |
| $[C_0(NO_1)]^{3-}$ (**)                        | 10.1871   | 8060 | 7        |
| $[C_0(NH) NH OSO 1^{2+}$                       | 10.1071   | 8111 | 113      |
| $[C_0(NH_1)]^{3+}$                             | 10.1075   | 8300 | 5        |
| $[C_0(NH_3)]^{3+}$                             | 10.1075   | 8114 | 86       |
| $[C_0(NH_3)]^{3+}$                             | 10.1000   | 8175 | 25       |
| [00(14113/6]                                   | 10.1003   | 6110 | 20       |

TABLE 2a. Gyromagnetic ratios of cobalt(III) complexes

TABLE 2a (continued)

| Complex                                                              | Gamma(Co) | σ(1)  | Lit. No. |
|----------------------------------------------------------------------|-----------|-------|----------|
| $[Co(NH_3)_6]^{3+}$                                                  | 10.1887   | 8218  | 7        |
| $[Co(NH_3)_5(N_3)]^2$                                                | 10.1897   | 8681  | 113      |
| $[Co(tn)_3]^{3+}$                                                    | 10.1900   | 8312  | 86       |
| $[Co(en)_2(C_2O_4)]^+$                                               | 10.1902   | 8731  | 113      |
| $[Co(NH_3)_5 I]^{2+}$                                                | 10.1914   | 8849  | 113      |
| $[Co(en)_2(mal)]^+$                                                  | 10.1916   | 8870  | 113      |
| $[Co(NH_3)_5Cl]^{2+}$                                                | 10.1918   | 8889  | 113      |
| $[Co(NH_3)_5Br]^{2+}$                                                | 10.1921   | 8919  | 113      |
| $[Co(bn)_3]^{3+}$                                                    | 10.1930   | 8670  | 97       |
| $[Co(S_2P(OEt)_2)_3]$                                                | 10.1934   | 9048  | 113      |
| $[Co(NH_3)_5(O_2C(Me))]^{2+}$                                        | 10.1940   | 9107  | 113      |
| [Co(NH <sub>3</sub> ) <sub>5</sub> (OH <sub>2</sub> )] <sup>3+</sup> | 10.1944   | 9147  | 113      |
| [Co(NH <sub>3</sub> ) <sub>5</sub> (OH)] <sup>2+</sup>               | 10.1949   | 9196  | 113      |
| $[Co(S_2P(OEt)_2)_3]$                                                | 10.1964   | 8978  | 25       |
| $[C_0(NH_3)_5NO_2]^{2+}$                                             | 10.1972   | 9423  | 113      |
| $[C_0(NH_3)_4CO_3]^+$                                                | 10.1981   | 9146  | 7        |
| $[Co(NH_3)_5F]^{2+}$                                                 | 10.2000   | 9701  | 113      |
| $[C_0(NH_3)_4CO_3]^+$                                                | 10.2041   | 9734  | 7        |
| $[Co(en)(C_2O_4)_2]^-$                                               | 10.2088   | 10572 | 113      |
| $[Co(en)(mal)_2]^-$                                                  | 10.2119   | 10879 | 113      |
| $[Co(Mo_6O_{24}H_6]^{3-}]$                                           | 10.2288   | 12551 | 113      |
| [Co(acac) <sub>3</sub> ]/CHCl <sub>3</sub>                           | 10.2322   | 12520 | 25       |
| $[Co(C_2O_4)_3]^{3-1}$                                               | 10.2332   | 12987 | 113      |
| $[Co(acac)_3]/C_6H_6$                                                | 10.2338   | 12680 | 7        |
| $[Co(C_2O_4)_3]^{3}$                                                 | 10.2350   | 13000 | 5        |
| $[C_0(C_2O_4)_3]^{3-1}$                                              | 10.2368   | 12976 | 25       |
| $[C_0(C_2O_4)_3]^{3-1}$                                              | 10.2370   | 12963 | 86       |
| $[C_0(C_2O_4)_3]^{3-1}$                                              | 10.2375   | 13040 | 7        |
| [Co(mal)] <sup>3-</sup>                                              | 10.2436   | 14017 | 113      |
| [Co(CO <sub>3</sub> ) <sub>3</sub> ] <sup>3-</sup>                   | 10.2485   | 14130 | 7        |
| $[Co(OH_2)_6]^{3+}$                                                  | 10.2540   | 15047 | 113      |
|                                                                      |           |       |          |

TABLE 2b. Chemical shift measured from hexacyanocobaltate(III),  $\sigma(1)$ , and line width data.

| Complex                                                              | σ(1)         | Width (Hz) | Lit. No. |
|----------------------------------------------------------------------|--------------|------------|----------|
| $[Co(en)_2Cl_2]^+, cis- (IM HCl)$                                    |              | 5100       | 11       |
| $[Co(en)_2Cl_2]^+$ , trans-                                          |              | 7800       | 11       |
| $[C_0(NH_3)_3](OH)_2(\mu - C_4H_2O_2CO(NH_3)_5)]^{5+}$               | undetectable |            | 56       |
| [Co(diphos) <sub>3</sub> ] <sup>3+</sup>                             | -2600        | 9000       | 118      |
| $[Co(Me_2PCH_2CH_2PMe_2)_3]^{3+}$                                    | -2530        | 10000      | 118      |
| $[C_0(C_5H_5)_2]^+$                                                  | -2200        |            | 26       |
| $[Co(o-C_6H_4(PPh_2)_2)_3]^{3+}$                                     | -2120        | 11000      | 118      |
| $[Co(P(OCH_2)_3CMe]_6]^{3+}$                                         | -1243        | 75         | 78       |
| $[Co(P(OMe)(OCH_2CH_2O))_6]^{3+}$                                    | -1185        | 2500       | 78       |
| $[Co(o-C_6H_4(PMe_2)(AsMe_2))_3]^{3+}$                               | -910         | 14000      | 118      |
| [Co(diars) <sub>3</sub> ] <sup>3+</sup>                              | - 520        | 6000       | 118      |
| [Co(P(OMe)(OCHMeCH <sub>2</sub> CHMeO)) <sub>6</sub> ] <sup>3+</sup> | - 356        | 3000       | 78       |
| [Co(diars) <sub>3</sub> ] <sup>3+</sup> /DMSO                        | - 320        |            | 118      |
| [Co(P(OMe)(OCHMeCH <sub>2</sub> CHMeO)) <sub>6</sub> ] <sup>3+</sup> | -307         | 3000       | 78       |

TABLE 2b (continued)

| Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | σ(1)   | Width (Hz) | Lit. No. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|----------|
| $[Co(P(OMe)_1)_6]^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 305    | 150        | 78       |
| $[Co(P(OMe)_{3})_{2}]^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 304  | 340        | 61       |
| [Co(diars),] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -100   |            | 97       |
| $[C_0(CN)_{\ell}]^{3-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0      | 50         | 22       |
| $[C_0(CN)_2]^{3-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ő      | 5          | 95       |
| $[C_0(CN)_1]^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ő      | 0          | 95       |
| $[C_0(CN)_{1^{3}}]^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ő      | v          | 113      |
| $[C_0(CN), 1^{3-1}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Û      |            | 11       |
| $[C_0(CN), 1^{3-1}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ů<br>0 |            | 12       |
| $[C_0(CN)]^{3-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      |            | 8        |
| $[C_0(CN)]^{3-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      |            | 65       |
| $[C_0(CN)]^{3-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0      | 50         | 10       |
| [Co(CN)] 13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0      | 5          | 03       |
| $[Co(CN)_{6}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 5          | 93       |
| $[Co(CN)_{6}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | £          | 25       |
| $[Co(CN)_6]^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 5          | 95       |
| $[Co(CN)_6]^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0      | 175        | 29       |
| $[Co(CN)_6]^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      |            | 7        |
| $[Co(CN)_6]^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      |            | 86       |
| $[Co(CN)_6]^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      |            | 5        |
| $[Co(CN)_6]^3 - {}^{13}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.851  |            | 13       |
| $[Co(CN)_6]^3\{{}^{13}C\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.914  |            | 12       |
| $[Co(CN)_6]^{3-} - {}^{15}N_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.18   |            | 12       |
| $[Co(CN)_6]^{3-} - {}^{13}C{}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.709  |            | 13       |
| $[Co(CN)_6]^{3-} - {}^{13}C{}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.832  |            | 12       |
| $[Co(CN)_6]^{3-} - \{^{13}C\}_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.56   |            | 13       |
| $[Co(CN)_6]^{3-} - \{^{13}C\}_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.743  |            | 12       |
| $[Co(CN)_6]^{3-} - \{^{13}C\}_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.659  |            | 12       |
| $[Co(CN)_{6}]^{3-} - \{^{13}C\}_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.58   |            | 12       |
| $[Co(CN)_{6}]^{3-} - \{^{13}C\}_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.463  |            | 12       |
| $[Co(o-C_6H_4(PMe_2)(SbMe_2))_3]^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 390    |            | 124      |
| [Co(CN),NO,] <sup>3-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 598    | 4200       | 95       |
| [Co(CN), NO,] <sup>3-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 599    | 5100       | 95       |
| $[C_0(CN), NO_1]^{3-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 619    | 3767       | 95       |
| $[Co(CN)_{\epsilon}I]^{3-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 780    | 9970       | 27       |
| $[C_0(CN), NH_3]^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1162   | 3131       | 95       |
| $[Co(CN)_NH_3]^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1168   | 3131       | 93       |
| $[C_0(CN)_NH_3]^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1169   | 4470       | 95       |
| $C_0(CN) \cdot NH_1^{2-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1174   | 3747       | 95       |
| $[Co(CN)_B r]^{3-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1220   | 11370      | 27       |
| $[C_0(CNO)]^{3-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1300   | 11570      | 97       |
| $C_0(CN) = NO_1^{3-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1200   | 10000      | 22       |
| Co(Me.PCH CH.PMe.) Cl.1 <sup>+</sup> trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1440   | 14000      | 118      |
| $Co(dinbas) Cl 1^+$ trans-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1710   | 16500      | 110      |
| $Co(a_C \in (DM_{e_1})) \subset 1^+$ trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1710   | 14000      | 110      |
| $[C_{0}(C_{0})_{0}]_{0} = [C_{0}(C_{0})_{0}]_{0} = [C_{0}(C_{0})]_{0} = [C_{0}$ | 1/40   | 6120       | 110      |
| $[C_{2}(CN)_{2}]^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1822   | 0120       | 27       |
| $(C_1(UN)_2(UN))^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1840   | 5250       | 27       |
| $[Co(en)(CN)_4]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1998   | 54/9       | 95       |
| $[Co(en)(CN)_4]$ , cis-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2006   | 5410       | 93       |
| $Co(en)(CN)_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2006   | 5438       | 95       |
| $[Co(en)(CN)_4]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2013   | 5410       | 95       |
| [Co(PhP(CH <sub>2</sub> CH <sub>2</sub> PPh <sub>2</sub> ) <sub>2</sub> Cl <sub>3</sub> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2100   | 16000      | 118      |

| TABLE 2b (cont | tinued) |
|----------------|---------|
|----------------|---------|

| Complex                                                                                   |               | σ(1) | Width (Hz) | Lit. No. |
|-------------------------------------------------------------------------------------------|---------------|------|------------|----------|
| $[Co(o-C_6H_4(PPh_2)_2)_2Cl_2]^+$ , trans-                                                |               | 2220 | 15000      | 118      |
| [Co(Ph2PCH=CHPPh2)2Cl2]+, trans-                                                          |               | 2250 | 20000      | 118      |
| $[Co(P(CH_2CH_2PPh_2)_3)Cl_2]^+$ , cis-                                                   |               | 2360 | 16000      | 118      |
| [Co(PhP(CH <sub>2</sub> CH <sub>2</sub> PPh <sub>2</sub> ) <sub>2</sub> Br <sub>3</sub> ] |               | 2430 | 16000      | 118      |
| $[Co(NH_{3})_{2})(CN)_{4}]^{-}$ , cis-                                                    |               | 2457 | 2673       | 93       |
| $[Co(o-C_6H_4(PMe_2)(AsMe_2)),Cl_2]^+,ti$                                                 | rans-         | 2490 | 19500      | 118      |
| $Co(o - C_6 H_4(PPh_2)(SMe))_1^{3+}$                                                      |               | 2620 |            | 124      |
| $Co(NH_1)_2(CN)_1^{-}$ , trans-                                                           |               | 2744 | 13096      | 93       |
| $[Co(o-C_{e}H_{1}(PPh)_{2}),Br_{2}]^{+}$ , trans-                                         |               | 2750 | 14000      | 118      |
| Co(As(CH,CH,CH,AsMe,),)Cl,1 <sup>+</sup> .                                                | cis-          | 2820 | 14500      | 118      |
| Co(Me,PCH,CH,PMe,),J,] <sup>+</sup> , trans                                               | -             | 2830 | 13000      | 118      |
| $Co(diars)_{S}Cl_{S}l^{+}$ . trans-                                                       |               | 2830 | 15000      | 118      |
| $Co(diars)_{s}Cl_{s}l^{+}$ cis-                                                           |               | 2860 | 12000      | 118      |
| $Co(diars)_Br_1^+$ trans-                                                                 |               | 2880 | 12000      | 118      |
| $C_0(dm_{e}H)_{(nv)}(S_nPh_{e})$                                                          |               | 3090 | 11000      | 45       |
| $Co(dmgH)_{(ha)}(SnPh)$                                                                   |               | 3150 |            | 45<br>45 |
| $C_0(NH_{\star})_{\star}(CN)_{\star}$                                                     | (59.035 MH2)  | 3312 | 720        | 45<br>QS |
| Co(NH) (CN) 1 fac                                                                         | (94.457 MHz)  | 3312 | 720        | 05       |
| Co(NH) (CN) 1 fac                                                                         | (34.437 MHZ)  | 3313 | 618        | 93       |
| Co(NH) (CN) 1 fee                                                                         | (21.252 MHz)  | 2217 | 619        | 93       |
| $Co(1(11_3)_3)(C(1)_3)_5 Jac-$                                                            | (21.232 MITZ) | 2220 | 018        | 93       |
| $Co((MH_{1})_{2}Me((NH_{2}DZ))_{2})$                                                      |               | 2220 |            | 45       |
| $Co((NT_3)_3(CN)_3], mer-$                                                                |               | 3320 |            | 113      |
| $Co(dmgH)_2(NC_5H_5)$                                                                     |               | 3370 |            | 45       |
| $Co(dmgH)_2(CN(c-Hex))]$                                                                  |               | 3400 |            | 85       |
| $Co(dmgH)_2(CN(c-Hex))_2$                                                                 |               | 3410 |            | 85       |
| $Co(amgH)_2(Bu)(NC_5H_5)$                                                                 |               | 3420 |            | 45       |
| $Co(o-C_6H_4(PPn_2)(SMe))_2Br_2]$                                                         |               | 3430 |            | 124      |
| $Co(o-C_6H_4(PPh_2)(SMe))_2Cl_2]^+$                                                       | /             | 3475 |            | 124      |
| $Co(NH_3)_4(CN)_2]^+$ , trans-                                                            | (21.252 MHz)  | 3498 | 14810      | 93       |
| $Co(dmgH)_2(CN(c-Hex))Br]$                                                                |               | 3500 |            | 85       |
| Co(dmgH) <sub>2</sub> (CN(c-Hex))CI]                                                      |               | 3600 |            | 85       |
| $Co(dmgH)_2(CN(c-Hex))(NO_2)]$                                                            |               | 3690 |            | 85       |
| $Co(NH_3)_3(CN)_3]$ , mer-                                                                | (95.457 MHz)  | 3947 | 14078      | 95       |
| $Co(NH_3)_3(CN)_3]$ , mer-                                                                | (59.035 MHz)  | 3976 | 10808      | 95       |
| Co(NH <sub>3</sub> ) <sub>3</sub> (CN) <sub>3</sub> ], <i>mer</i> -                       | (21.252 MHz)  | 3991 | 4542       | 95       |
| Co(NH <sub>3</sub> ) <sub>3</sub> (CN) <sub>3</sub> ], <i>mer</i> -                       | (21.252 MHz)  | 3991 | 4542       | 93       |
| $Co(dmgH)_2(Me)(OH_2)]$                                                                   |               | 4020 |            | 45       |
| $Co(o-C_6H_4(PMe_2)(SbMe_2))_2Br_2]^+$                                                    |               | 4280 |            | 124      |
| $Co(o-C_6H_4(PMe_2)(SbMe))_2Cl_2]^+$                                                      |               | 4330 |            | 124      |
| $Co(en)_2(CN)_2]^+$ , cis-                                                                | (94.457 MHz)  | 4364 | 5513       | 95       |
| $Co(diars)_2 I_2]^+$ , trans-                                                             |               | 4370 | 15000      | 118      |
| $Co(en)_2(CN)_2]^+$ , cis-                                                                | (21.252 MHz)  | 4379 | 3700       | 93       |
| $Co(en)_2(CN)_2]^+$ , cis-                                                                | (21.252 MHz)  | 4384 | 3700       | 95       |
| $Co(en)_2(CN)_2]^+$ , cis-                                                                | (59.035 MHz)  | 4388 | 5408       | 95       |
| $Co(o-C_6H_4(PPh_2)(SeMe))_2Br_2]^+$                                                      |               | 4400 |            | 124      |
| $Co(o-C_6H_4(PPh_2)(SeMe))_2Cl_2]^+$                                                      |               | 4445 |            | 124      |
| Co(Me2SbCH2CH,CH,SbMe,),Br,I                                                              | +             | 4450 |            | 124      |
| $Co(o-C_6H_4(SbMe_2),),Cl,]^{\bullet}$                                                    |               | 4575 |            | 124      |
| Co(dmgH) <sub>2</sub> (NCMe)I]                                                            |               | 4620 |            | 85       |
| $Co(o-C_6H_4(SbMe_2)_2), Br_2]^+$                                                         |               | 4710 |            | 124      |
| Co(en) (CN) 1 <sup>+</sup> trans                                                          | (59.035 MHz)  | 4718 | 12025      | 95       |

TABLE 2b (continued)

| Complex                                                            |              | σ(1) | Width (Hz) | Lit. No. |
|--------------------------------------------------------------------|--------------|------|------------|----------|
| [Co(en),(CN),] <sup>+</sup> , trans-                               | (94.45 MHz)  | 4726 | 16690      | 95       |
| [Co(en) <sub>2</sub> (CN) <sub>2</sub> ] <sup>+</sup> , trans-     | (21.252 MHz) | 4727 | 8089       | 93       |
| [Co(en),(CN),] <sup>+</sup> , trans-                               | (21.252 MHz) | 4736 | 8089       | 95       |
| $[Co(dmgH)_1]^{3+}$                                                |              | 4880 |            | 97       |
| [Co(triarsine),] <sup>3+</sup> (*)                                 |              | 4902 |            | 25       |
| $[Co(NH_3)_4(CN)_3]^+$ , cis-                                      |              | 5049 |            | 113      |
| $[Co(dmgH)_2(NH_3)_2]^+$                                           |              | 5120 |            | 45       |
| $[Co(NH_3)_4(CN)_3]^+$ , cis-                                      | (21.252 MHz) | 5132 | 2489       | 93       |
| $[Co(NH_3)_4(CN)_2]^+$ , cis-                                      | (21.252 MHz) | 5132 | 2489       | 95       |
| $[Co(NH_3)_4(CN)_2]^+$ , cis-                                      | (59.035 MHz) | 5164 | 7059       | 95       |
| $[Co(NH_3)_4(CN)_2]^+$ , cis-                                      | (94.457 MHz) | 5173 | 9656       | 95       |
| $[Co(dmgH)_2(NH_3)_2]^{3+}$                                        | (59.035 MHz) | 5370 | 7299       | 95       |
| $[Co(dmgH)_2(NH_3)_2]^{3+}$                                        | (94.457 MHz) | 5382 | 9189       | 95       |
| $[Co(dmgH)_2(NH_3)_2]^{3+}$                                        | (21.252 MHz) | 5386 | 6123       | 95       |
| $[Co(triarsine)_2]^{3+}(*)$                                        |              | 5398 |            | 25       |
| $[Co(o-C_6H_4(PMe_2)(SbMe_2))_2I_2]^+$                             |              | 5480 |            | 124      |
| $[Co(bimp)_2(NH_3)_2]^+$                                           |              | 5510 |            | 45       |
| $[Co_2(S_2CN(c-Hex)_2)_5]^+$ (II)                                  |              | 5570 |            | 112      |
| $[Co_2(S_2C-(2,6-Me_2pip))_5]^+$ (II)                              |              | 5790 |            | 112      |
| $[Co(S_2CBz)_3]$                                                   |              | 5830 |            | 97       |
| $[Co_2(S_2C-(2-Mepip))_5]^+$ (II)                                  |              | 5890 |            | 112      |
| $[Co(NH_3)_4(CN)(SO_3)]$                                           |              | 5910 |            | 32       |
| $[Co_2(S_2C-(pip))_5]^+$ (II)                                      |              | 5960 |            | 112      |
| $[Co_2(S_2CN(Bz)_2)_5]^+$ (II)                                     |              | 5960 |            | 112      |
| $[Co_2(S_2CN(Pr)_2)_5]^+$ (II)                                     |              | 5970 |            | 112      |
| $[Co_2(S_2C-(4-Mepip))_5]^+$ (II)                                  |              | 5970 |            | 112      |
| $[Co_2(S_2CN(Et)_2)_3]^+$ (II)                                     |              | 5980 |            | 112      |
| $[Co(S_2CN(Bu)(t-Bu))_3]/CH_2Cl_2$                                 |              | 5990 | 1510       | 111      |
| $[Co_2(S_2C-(morph))_5]^+$ (II)                                    |              | 5990 |            | 112      |
| [Co(NH <sub>3</sub> ) <sub>5</sub> SO <sub>3</sub> ] <sup>2+</sup> |              | 6030 | 430        | 11       |
| $[Co_2(S_2CN(Me)_2)_5]^+$ (II)                                     |              | 6050 |            | 112      |
| [Co(S <sub>2</sub> COEt) <sub>3</sub> ]                            |              | 6100 |            | 17       |
| $[Co(NH_3)NO_2)_5]^{2-}$                                           |              | 6100 |            | 82       |
| $[Co_2(S_2CN(c-Hex)_2)_5]^+$ (I)                                   |              | 6200 |            | 112      |
| [Co(S <sub>2</sub> COEt) <sub>3</sub> ]                            |              | 6208 |            | 25       |
| $[Co(NH_3)_2(NO_2)_4]^-$                                           |              | 6220 |            | 82       |
| [Co(S <sub>2</sub> COEt) <sub>3</sub> ]                            |              | 6234 |            | 86       |
| $[Co(S_2COMe)_3]$                                                  |              | 6250 |            | 97       |
| $[Co(Se_2CN(c-Hex)_2)_3]$                                          |              | 6260 |            | 115      |
| $[Co_2(S_2C-(pyrr))_5]^+ (II)$                                     |              | 6260 |            | 112      |
| [Co(S <sub>2</sub> COEt) <sub>3</sub> ]                            |              | 6316 |            | 113      |
| $[Co(S_2COCH(Me)_2)_3]$                                            |              | 6319 |            | 25       |
| $[Co(en)_2(NO_2)_2]^+$ , trans-                                    | (94.457 MHz) | 6319 | 1579       | 95       |
| $[Co(en)_2(NO_2)_2]^+$ , trans- /H <sub>2</sub> O                  | (94.457 MHz) | 6319 | 1579       | 96       |
| $[Co(en)_2(NO_2)_2]^+$ , trans, $/H_2O$                            | (21.252 MHz) | 6323 | 1366       | 96       |
| $[Co(en)_2(NO_2)_2]^+$ , trans                                     | (21.252 MHz) | 6323 | 1366       | 95       |
| $[Co(en)_2(NO_2)_2]^+$ , trans,                                    | (59.035 MHz) | 6329 | 1430       | 95       |
| $[Co(en)_2(NO_2)_2]^+$ , trans- /H <sub>2</sub> O                  | (59.035 MHz) | 6329 | 1430       | 96       |
| $[Co(S_2CN(c-Hex)_2)_3]$                                           |              | 6330 | 1890       | 111      |
| $[Co(S_2CN(c-Hex)_2)_3]$                                           |              | 6330 |            | 115      |
| $[Co(S_2CN(c-Hex)_2)_3]$                                           |              | 6330 |            | 112      |

| TABLE 2b (continued) |
|----------------------|
|----------------------|

|                                                                                    | TABLE 2b (co | ntinued) |            |          |
|------------------------------------------------------------------------------------|--------------|----------|------------|----------|
| Complex                                                                            |              | σ(1)     | Width (Hz) | Lit. No. |
| $[Co(S_2CN(s-Bu)_2)_3]/CH_2Cl_2$                                                   |              | 6350     | 1500       | 111      |
| $[Co(en)_2(NO_2)_2]^+$ , trans-                                                    |              | 6350     |            | 8        |
| $[Co(Se_2CN)i-Pr)_2]_3]$                                                           |              | 6360     |            | 115      |
| $[Co(S_2CO(i-Pr)_2)_3]$                                                            |              | 6360     | 300        | 22       |
| $[Co(S_2CN(i-Pr)(c-Hex))_3]$                                                       |              | 6360     | 1700       | 111      |
| [Co(S <sub>2</sub> COEt) <sub>3</sub> ]                                            |              | 6360     | 500        | 22       |
| $[Co(en)_2(NO_2)_2]^+$ , trans- /MeCN                                              | (21.252 MHz) | 6361     | 155        | 96       |
| $[Co(en)_2(NO_2)_2]^+$ , trans- /MeCN                                              | (94.457 MHz) | 6366     | 240        | 96       |
| [Co(en) <sub>2</sub> (NO <sub>2</sub> ) <sub>2</sub> ] <sup>+</sup> , trans- /MeCN | (59.035 MHz) | 6372     | 163        | 96       |
| [Co(en) <sub>2</sub> (NO <sub>2</sub> ) <sub>2</sub> ] <sup>+</sup> , trans- /MeOH | (21.252 MHz) | 6374     | 716        | 96       |
| [Co(en) <sub>2</sub> (NO <sub>2</sub> ) <sub>2</sub> ] <sup>+</sup> , trans- /MeOH | (94.457 MHz) | 6383     | 800        | 96       |
| [Co(en) <sub>2</sub> (NO <sub>2</sub> ) <sub>2</sub> ] <sup>+</sup> , trans- /DMSO | (21.252 MHz) | 6387     | 3963       | 96       |
| [Co(en) <sub>2</sub> (NO <sub>2</sub> ) <sub>2</sub> ] <sup>+</sup> , trans- /MeOH | (59.035 MHz) | 6387     | 751        | 96       |
| $[Co(S_2CN(i-Pr)_2)_3]/CH_2Cl_2$                                                   |              | 6390     | 1030       | 111      |
| $[Co(S_2CS)_3]^{3-1}$                                                              |              | 6390     |            | 97       |
| $[Co(S_2CN(i-Pr)_2)_3]$                                                            |              | 6390     |            | 115      |
| $[Co(tacn)_2]^{3+}$                                                                |              | 6394     |            | 113      |
| $[Co(dien)(NO_2)_3], mer-/H_2O$                                                    | (21.252 MHz) | 6394     | 1620       | 96       |
| $[Co(en)_2(NO_2)_2]^+$ , trans- /DMSO                                              | (94.457 MHz) | 6396     | 4400       | 96       |
| $[Co(dien)(NO_2)_3], mer-/H_2O$                                                    | (59.035 MHz) | 6397     | 2127       | 96       |
| $[Co(dien)(NO_2)_3], mer-/H_2O$                                                    | (94.457 MHz) | 6399     | 3204       | 96       |
| $[Co_2(S_2C-(2,6-Me_2pip))_5]^+$ (I)                                               |              | 6400     |            | 112      |
| $[Co(en)_2(NO_2)_2]^+$ , trans- /DMSO                                              | (59.035 MHz) | 6401     | 3642       | 96       |
| [Co(dien)(NO <sub>2</sub> ) <sub>3</sub> ], mer- /MeOH                             | (21.252 MHz) | 6418     | 1826       | 96       |
| $[Co(S_2CN(Hex)_2)(S_2CN(c-Hex)_2)_2]$                                             |              | 6420     |            | 111      |
| [Co(dien)(NO <sub>2</sub> ) <sub>3</sub> ], mer- /MeCN                             | (21.252 MHz) | 6425     | 610        | 96       |
| [Co(dien)(NO <sub>2</sub> ) <sub>3</sub> ], mer- /MeOH                             | (59.035 MHz) | 6428     | 1969       | 96       |
| [Co(dien)(NO <sub>2</sub> ) <sub>3</sub> ], mer- /MeOH                             | (94.457 MHz) | 6431     | 2400       | 96       |
| [Co(dien)(NO <sub>2</sub> ) <sub>3</sub> ], mer- /MeCN                             | (94.457 MHz) | 6435     | 1000       | 96       |
| $[Co(dien)(NO_2)_3], mer-/Me_2CO$                                                  | (21.252 MHz) | 6435     | 956        | 96       |
| $[Co(dien)(NO_2)_3], mer-/Me_2CO$                                                  | (59.035 MHz) | 6439     | 926        | 96       |
| $[Co(S_2C-(pip)(S_2CN(c-Hex)_2)_2]]$                                               |              | 6440     |            | 111      |
| $[Co(dien)(NO_2)_3]$ , mer- /Me <sub>2</sub> CO                                    | (94.457 MHz) | 6449     | 1000       | 96       |
| $[Co(S_2CN(Et)_2)_3]$                                                              |              | 6450     | 300        | 22       |
| $[Co(S_2CN)Bu)_2)(S_2CN(c-Hex)_2)_2]$                                              |              | 6450     |            | 111      |
| [Co(dien)(NO <sub>2</sub> ) <sub>3</sub> ], mer- /MeCN                             | (59.035 MHz) | 6451     | 857        | 96       |
| [Co(S <sub>2</sub> CSEt) <sub>3</sub> ]                                            |              | 6460     |            | 17       |
| [Co(dien)(NO <sub>2</sub> ) <sub>3</sub> ], mer- /DMSO                             | (94.457 MHz) | 6463     | 7130       | 96       |
| $[Co(en)_2(NO_2)_2]^+$ , cis-                                                      |              | 6470     |            | 8        |
| $[Co(S_2CN(Et)_2)(S_2CN(c-Hex)_2)_2]$                                              |              | 6470     |            | 111      |
| $Co(NH_3)_3(NO_2)_3$                                                               |              | 6470     |            | 82       |
| Co(dien)(NO <sub>2</sub> ) <sub>3</sub> ], mer- /DMSO                              | (21.252 MHz) | 6471     | 3853       | 96       |
| Co(dien)(NO <sub>2</sub> ) <sub>3</sub> ], mer- /DMSO                              | (59.035 MHz) | 6476     | 5491       | 96       |
| $[Co(NH_2OH)_6]^{3+}$                                                              |              | 6500     | 210        | 22       |
| $[Co(en)_2(NO_2)_2]^+$ , trans-                                                    |              | 6500     |            | 26       |
| $[Co(S_2CN(Bu)_2)(S_2CN(i-Pr)_2)_2]$                                               |              | 6520     |            | 111      |
| $Co(S_2CN(Hex)_2)(S_2CN(i-Pr)_2)_2]$                                               |              | 6530     |            | 111      |
| $Co(S_2C-(morph))(S_2CN(i-Pr)_2)_2]$                                               |              | 6530     |            | 111      |
| $[Co(S_2CN(Oct)_2)(S_2CN(i-Pr)_2)_2]$                                              |              | 6530     |            | 111      |
| $[Co(S_2CN(Et)_2)(S_2CN(i-Pr)_2)_2]$                                               |              | 6530     |            | 111      |

TABLE 2b (continued)

| Complex                                                                                                     |               | σ(1) | Width (Hz) | Lit. No. |
|-------------------------------------------------------------------------------------------------------------|---------------|------|------------|----------|
| $\frac{1}{Co(S_2CN(Bz)_2)_5]^+}$ (I)                                                                        |               | 6540 |            | 112      |
| $[Co(S_2CN(Me)_2)(S_2CN(i-Pr)_2)_2]$                                                                        |               | 6540 |            | 111      |
| $[Co(S_2C-(2,6-Me_2pip))_3]$                                                                                |               | 6540 | 1300       | 111      |
| $[Co(S_2C-(2,6-Me_2pip))_3]$                                                                                |               | 6540 |            | 112      |
| $[Co(S_2C-(2-Mepip))_{5}]^+$ (1)                                                                            |               | 6550 |            | 112      |
| $[Co(S,C-(morph)(S,CN(c-Hex)_{2})_{2}]$                                                                     |               | 6550 |            | 111      |
| [Co(amben)( <sup>15</sup> NO)] /CD <sub>2</sub> Cl <sub>2</sub> (I)                                         |               | 6559 | 4800       | [2]      |
| $[Co(o-C_6H_4(SbMe_2)_2)_2I_2]^+$                                                                           |               | 6560 |            | 124      |
| [Co(Me,SbCH,CH,CH,SbMe,),1,] <sup>+</sup>                                                                   |               | 6565 |            | 124      |
| $[Co(en)_2(NO_2)_2]^+$ , trans-                                                                             |               | 6570 | 640        | 11       |
| $[Co(NH_3),CN]^{2+}$                                                                                        |               | 6570 |            | 32       |
| [Co(S,CN(Me),)(S,CN(c-Hex),),]                                                                              |               | 6570 |            | 111      |
| [Co(S,C-(pyrr))(S,CN(c-Hex),)]                                                                              |               | 6590 |            | 111      |
| [Co(S,CN(Hex)),(S,CN(c-Hex))]                                                                               |               | 6600 |            | 111      |
| [Co(S,C(pip)),(S,CN(c-Hex))]                                                                                |               | 6610 |            | 111      |
| [Co(S,CN(Bu),),(S,CN(c-Hex),)]                                                                              |               | 6610 |            | 111      |
| $[Co_{3}(S_{3}C-(pip))_{s}]^{+}(I)$                                                                         |               | 6620 |            | 112      |
| $[Co(bipy)]^{3+}$                                                                                           |               | 6620 |            | 8        |
| $[C_0(NH_0OH)_2]^{3+}$                                                                                      |               | 6624 |            | 68       |
| [Co(S,CN(Et)),(S,CN(c-Hex))]                                                                                |               | 6630 |            | 1[]      |
| [Co(S,CN(Bu),),(S,CN(i-Pr),)]                                                                               |               | 6630 |            | 111      |
| $[Co_{3}(S_{3}CN(Pr)_{3})]^{+}(1)$                                                                          |               | 6630 |            | 112      |
| [Co(S <sub>2</sub> CN(Et)) <sub>2</sub> ]                                                                   |               | 6630 |            | 17       |
| $[Co(S_2CN(i-Bu)_2)_1]$                                                                                     |               | 6640 |            | 115      |
| $[Co_{2}(S_{2}C_{4}(4-Mepip))_{2}]^{+}(I)$                                                                  |               | 6640 |            | 112      |
| $[C_0(S_cCN(i-Bu)_s)_s]/CH_sCl_s$                                                                           |               | 6640 | 1630       | 111      |
| $[C_0(NH_*), CN]^{2+}$ (                                                                                    | 21.252 MHz)   | 6641 | 3260       | 94       |
| $[C_0(S_*CN(Et)_*(^{15}NO)]/CDC],$                                                                          |               | 6642 | 1150       | 121      |
| $[C_0(NH_3), CN]^{2+}$ (                                                                                    | 94.457 MHz)   | 6645 | 14385      | 94       |
| $[C_0(NH_3), CN]^{2+}$ (                                                                                    | 59.035 MHz)   | 6646 | 8662       | 94       |
| $[Co(S_{1}CN(Bz)_{1})]$                                                                                     |               | 6650 | 2400       | 111      |
| [Co(S,CN(Pr)(Ph))]                                                                                          |               | 6650 | 2000       | 111      |
| [Co(inaa).]                                                                                                 |               | 6650 | 2000       | 19       |
| $[Co(S,CN(B_7)_{\star})_{\star}]$                                                                           |               | 6650 |            | 112      |
| $[Co(S_cC_{(pvrr)})(S_cCN(i-Pr)_s)_s]$                                                                      |               | 6650 |            | 111      |
| $[Co(S_CN(Me)(Ph))_1/(CHC)]_{ch}$                                                                           |               | 6660 | 1150       | 111      |
| $[Co(S_C_{(morph)}) (S_CN(i-Pr)_{-})]$                                                                      |               | 6660 |            | 111      |
| $[Co(S_C - (morph))_2(S_C N(c - Hex)_2)]$                                                                   |               | 6660 |            | 111      |
| [Co(S, CN(Bu)(Ph))]                                                                                         |               | 6660 | 1830       | 111      |
| $[C_0(S_1CN)(Her), (S_1CN(i_Pr),)]$                                                                         |               | 6660 | 1050       | 111      |
| $[Co(S_2CI)(IICx)_2(S_2CI)(III)_2)]$                                                                        |               | 6660 |            | 112      |
| $[C_0(S_1 CN(M_0)), (^{15}N_0)]/CDC[$                                                                       |               | 6668 | 750        | 121      |
| $\begin{bmatrix} Co(S_2CN(Mc)_2)_2(-NC) \end{bmatrix} \begin{bmatrix} Co(S_2CN(Mc)_2)_2(-NC) \end{bmatrix}$ |               | 6670 | 150        | 111      |
| $[C_0(S_1 CN(Oct)_2)_2(S_2 CN(I-T)_2)]$                                                                     |               | 6670 |            | 111      |
| $[C_0(S_2CI((EI)_2)_2(S_2CI((EI)_2)_2)]$                                                                    |               | 6670 | 2800       | 111      |
| $[Co(S_2CN(E)(J^2C_6H_4OH))_3]$                                                                             |               | 6670 | 2000       | 115      |
| $\begin{bmatrix} C_0(SE_2CR(I-Bd)_2)_3 \end{bmatrix}$                                                       | 21 252 MU-1   | 6675 | 2270       | 03       |
| $[Co(S, C_{1}(2, Menin))] $                                                                                 | 21.232 MITIZ) | 6690 | 1370       | 111      |
| $[Co(S_2C-(2-Mepip))_3]$                                                                                    |               | 6690 | 1250       | 111      |
| $[Co(S_2CN(E)(FII))_3]$ $[Co(S_2CN(M_2)_1) (S_2CN(a Har)_1)]$                                               |               | 6680 | 1230       | 111      |
| $[Co_1(S_C(morph))]^+ (I)$                                                                                  |               | 6600 |            | 112      |
| $[Co_2(S_2C^*(morph))_5]^{-1}(1)$                                                                           |               | 0000 |            | 114      |

| Complex                                                   |              | σ(1) | Width (Hz) | Lit. No. |
|-----------------------------------------------------------|--------------|------|------------|----------|
| [Co(S <sub>2</sub> C-(2-Mepip)) <sub>1</sub> ]            |              | 6680 |            | 112      |
| $[C_0(NH_3)_5CN)]^{2+}$                                   |              | 6681 |            | 113      |
| [Co(amben)(15NO)] /CD2Cl2 (II) (we                        | eak)         | 6687 | 550        | 121      |
| $[Co(S_2CN(Me)_2)_2(S_2CN(i-Pr)_2)]$                      |              | 6690 |            | 111      |
| $[Co(S_2CN(Et)(m-tol))_3]$                                |              | 6690 | 1700       | 111      |
| $[Co(NH_3)_5CN]^{2+}$                                     |              | 6700 | 1830       | 11       |
| $[Co(S_2CN(Me)(i-Bu))_3]/CH_2Cl_2$                        |              | 6700 | 820        | 111      |
| $[Co(S_2CN(Me)(i-Pr))_3]/CH_2Cl_2$                        |              | 6700 | 400        | 111      |
| $[Co(S_2CN(Me)_2)(S_2CN(i-Bu)_2)_2]$                      |              | 6700 |            | 111      |
| $[Co(S_2CN(Me)(i-Pr))_3]$                                 |              | 6700 |            | 115      |
| $[Co(S_2CN(Me)_2)_3]$                                     |              | 6704 |            | 25       |
| $[Co(S_2CN(Et)(3-pic))_3]$                                |              | 6710 | 1250       | 111      |
| $[Co(S_2CN(Me)_2)_5]^+$ (I)                               |              | 6710 |            | 112      |
| $[Co(S_2CN(Et)(Bz))_3]$                                   |              | 6725 | 1770       | 111      |
| $\left[Co(S_2CN(Pr)_2)_3\right]/CH_2Cl_2$                 |              | 6740 | 1200       | 111      |
| $[Co(S_2CN(Pr)_2)_3]$                                     |              | 6740 |            | 112      |
| $[Co(S_2CN(Hex)_2)_3]/CH_2Cl_2$                           |              | 6750 | 2120       | 111      |
| $[Co(S_2CN(Et)(C_2H_4OH))_3]$                             |              | 6750 | 850        | 111      |
| $[Co(S_2C-(3-Mepip))_3]$                                  |              | 6750 | 1250       | 111      |
| $[Co(Se_2CN(Me)_2)_3]$                                    |              | 6759 |            | 25       |
| $[Co(Se_2CN(CH_2)_5)_3]$                                  |              | 6760 | 1030       | 111      |
| $[Co(Se_2CN(Me)(i-Pr))_3]$                                |              | 6760 |            | 115      |
| $[Co(S_2CN(Oct)_2)_3]/CH_2Cl_2$                           |              | 6760 | 2740       | 111      |
| $[Co(S_2C-(4-Mepip))_3]$                                  |              | 6760 |            | 112      |
| $[Co(S_2CN(Me)(Bz))_3]$                                   |              | 6760 | 1430       | 111      |
| $[Co(S_2C-(pip))_3]$                                      |              | 6760 |            | 112      |
| [Co(S,CN(Bu),)] /CH,Cl,                                   |              | 6760 | 1700       | 111      |
| $[Co(S_2CN(Am)_2)_3]/CH_2Cl_2$                            |              | 6760 | 1940       | 111      |
| $[Co(S_2C-(pip))_3]$                                      |              | 6760 |            | 115      |
| $[Co(S_2C-(4-Mepip))_3]$                                  |              | 6760 | 1800       | : 111    |
| $[Co(S_2CN(Me)_2)_2(S_2CN(i-Bu)_2)]$                      |              | 6770 |            | 111      |
| $[Co(S_2CN(Et)(Bu))_3]/CH_2Cl_2$                          |              | 6780 | 1430       | 111      |
| $[Co(S_2CN(Me)(Oct))_3]/CH_2Cl_2$                         |              | 6790 | 1500       | 111      |
| $[Co(S_2CN(Et)_2)_3]$                                     |              | 6790 |            | 115      |
| $[Co(S_2CN(Et)_2)_3]/CH_2Cl_2$                            |              | 6790 | 850        | 111      |
| $[Co(S_2CN(Et)_2)_3]$                                     |              | 6790 |            | 112      |
| $[Co(S_2CN(Et)(t-Bu))_3]/CH_2Cl_2$                        |              | 6800 | 1500       | 111      |
| [Co(salen)(Me)(NH <sub>2</sub> Bz)]                       |              | 6800 |            | 45       |
| $[Co(S_2C-(morph))_3]$                                    |              | 6800 |            | 112      |
| $[Co(S_2CN(Me)(Bu))_3]/CH_2Cl_2$                          |              | 6800 | 1540       | 111      |
| $[Co(S_2C-(morph))_3]$                                    |              | 6800 |            | 115      |
| $[Co(NH_3)_5CN]^{2+}$                                     |              | 6800 |            | 26       |
| $[Co(S,C-(morph))_3]$                                     |              | 6800 | 1150       | 111      |
| $[Co(Se_2C-(pip))_3]$                                     |              | 6820 |            | 115      |
| [Co(salen)(Me)(OH <sub>2</sub> )] /MeOH                   |              | 6820 |            | 45       |
| $[Co(S_2CN(Me)_2)_3]$                                     |              | 6830 |            | 112      |
| $[Co(S_2CN(Me)_2)_3]$                                     |              | 6830 |            | 115      |
| [Co(S <sub>2</sub> C-(pyrr))(S <sub>2</sub> CN(Et)(Ph)),] |              | 6830 |            | 111      |
| [Co(S,CN(Me),),] /CH,Cl,                                  |              | 6830 | 570        | 111      |
| [Co(dien),] <sup>3+</sup> , bae, cfd- (***)               | (21.252 MHZ) | 6836 | 425        | 93       |
| [Co(dien) <sub>2</sub> ] <sup>3+</sup> , dab, cfe- (***)  | (21.252 MHZ) | 6836 | 423        | 95       |

TABLE 2b (continued)

| Complex                                                                           |                          | σ(1) | Width (Hz)            | Lit. No. |
|-----------------------------------------------------------------------------------|--------------------------|------|-----------------------|----------|
| $[Co(Se_2CN(Et)_2)_3]$                                                            | <u></u>                  | 6840 |                       | 115      |
| [Co(S,C-(pyrr))(S,CN(t-Bu),),]                                                    |                          | 6840 |                       | 111      |
| [Co(dien) <sub>2</sub> ] <sup>3+</sup> , dab, cfe-(??) (***)                      | (94.457 MHz)             | 6846 | 435                   | 95       |
| [Co(Se,C-(morph)),]                                                               |                          | 6850 |                       | 115      |
| [Co(dien),] <sup>3+</sup> , dab, cfe-(??) (***)                                   | (59.035 MHz)             | 6850 | 428                   | 95       |
| [Co(NH <sub>3</sub> ) <sub>2</sub> (NO <sub>2</sub> ) <sub>2</sub> ] <sup>-</sup> | (                        | 6860 | 1000                  | 22       |
| $[Co(NH_3)_4(NO_3)_3]^+$ , cis-                                                   |                          | 6880 |                       | 8        |
| $[Co(NH_3)_4(NO_3)_3]^+$ , trans-                                                 |                          | 6880 |                       | 82       |
| $[Co(NH_3),(NO_3),]^-$ , trans-                                                   |                          | 6880 | 940                   | 11       |
| $[Co(Se_{N}CN(Me)_{1})_{1}]$                                                      |                          | 6890 |                       | 115      |
| [Co(acacen)(Me)(NH,Bz)]                                                           |                          | 6900 |                       | 45       |
| $[Co(S_2CN(Me)_2)_3(^{15}NO)]/DMSO-d_2$                                           |                          | 6906 | 2150                  | 121      |
| $[Co(S_2C-(nyrr))(S_2C-(nin))_2]$                                                 |                          | 6910 | -100                  | 111      |
| $[Co(S_{2}C_{pvrr})_{2}(S_{2}C_{pvr})_{1}]$                                       |                          | 6920 |                       | 111      |
| $[Co(NH_2),(NO_2)]$ , mer-                                                        |                          | 6940 |                       | 8        |
| $[Co(S_C-(pyrr))(S_CN(Me)_{*})_{*}]$                                              |                          | 6950 |                       | лĭ       |
| $[Co(NH3)_{*}(NO_{*})_{*}]^{2-}$ trans-                                           |                          | 6950 |                       | 7        |
| $[C_0(NH_{*}), (CN)(OH_{*})]^{2+}$                                                |                          | 6950 |                       | 32       |
| $[Co(acacen)(Me)(NC_{-}H_{-})]$                                                   |                          | 6960 |                       | JZ<br>45 |
| $[Co(S_C_{pvrr}), (S_CN(c_Her))]$                                                 |                          | 6960 |                       | 111      |
| $[Co(dien), 1^{3+}$ bas of $(***)$                                                | (21 252 MHz)             | 6968 | 305                   | 05       |
| $[Co(dien)_{2}]^{3+}$ case bfds (***)                                             | (21.252  MHz)            | 6068 | 305                   | 03       |
| $[Co(NH_{1})(NO_{1})]$ mar-                                                       | (21.252 14112)           | 6070 | J9J<br>480            | 75<br>11 |
| $[Co(en)]^{n+}$ deprotonated                                                      |                          | 6080 | 400                   | 11       |
| $[Co(dien)]^{3+}$ bas ofd. (***)                                                  | (04.457 MHz)             | 6091 | 407                   | 44       |
| [Co(NH)(NO)] was $(HO)$                                                           | (34.437 MHZ)             | 6021 | 421                   | 93       |
| $[Co(NH_3)_3(NO_2)_3], mer / H_0$                                                 | (21.232  MHZ)            | 6082 | 182                   | 90       |
| $[Co(NH_3)_3(NO_2)_3], mer / H_0$                                                 | (39.035  MHz)            | 6093 | 930                   | 90       |
| $[Co(dien)]^{3+}$ bas ofd (***)                                                   | (94.437 MHZ)             | 6985 | 970                   | 90       |
| $[Co(dien)(NH) ]^{3+} fac$                                                        | (39.033 MITZ)            | 6000 | 420                   | 93       |
| $[Co(an)(13n_3)_3]^{-}, Jac-$                                                     |                          | 6990 |                       | 05       |
| $[Co(NH_{2})(NO_{2})]$                                                            | (21.252 MIL-)            | 6990 | 505                   | 43       |
| $[Co(NH_3)_3(NO_2)_3], her-/MeOH$                                                 | (21.252 MHZ)             | 6992 | 595                   | 96       |
| $[Co(NH_3)_3(NO_2)_3], mer-/MeOH$                                                 | (94.457 MHZ)             | 6998 | 1068                  | 96       |
| $[Co(NH_3)_3(NO_2)_3], mer- /DMSO$                                                | (59.035 MHZ)             | 7000 | 2908                  | 96       |
| $[C_1(NH_3)_3(NO_2)_3], mer-/DMSO$                                                | (94.457 MHZ)             | 7000 | 3330                  | 96       |
| $[Co(NH_3)_3(NO_2)_3], mer - /MeOH$                                               | (59.035 MHZ)             | 7005 | 832                   | 96       |
| $[Co(NH_3)_3(NO_2)_3], mer- /DMSO$                                                | (21.252 MHZ)             | 7007 | 2231                  | 96       |
| $[Co(en)_3]^{\circ}$                                                              |                          | 7010 |                       | 43       |
| $[Co(S_2C - (pyrr))_2(S_2CN(I-Bu)_2)]$                                            |                          | 7010 |                       |          |
| $[Co(en)_3]^{\circ}$                                                              | (01.070.1477.)           | 7010 |                       | 8        |
| $[Co(NH_3)_3(NO_2)_3], mer-/Me_2CO$                                               | (21.252 MHZ)             | 7012 | 363                   | 96       |
| $[Co(S_2C-(pyrr))_2(S_2CNE(Pn))]$                                                 | (0.4.45 <b>5</b> 3.477 \ | 7020 |                       | 111      |
| $[Co(NH_3)_3(NO_2)_3], mer-/Me_2CO$                                               | (94.457 MHz)             | 7023 | 450                   | 96       |
| $[Co(NH_3)_3(NO_2)_3], mer-/MeCN$                                                 | (21.252 MHz)             | 7026 | 131                   | 96       |
| $[Co(NH_3)_3(NU_2)_3], mer - /Me_2CO$                                             | (39.033 MHz)             | /029 | 376                   | 96       |
| $[C_2(S_2C-(pyrr))_5]^{(1)}$                                                      | (01.070                  | 7030 | <b>A</b> \ <b>A</b> \ | 112      |
| [Co(dien) <sub>2</sub> ] <sup>3</sup> , dab, cfe- (mer)                           | (21.252 MHz)             | 7031 | 3021                  | 95       |
| $[Co(dien)_2]^{3+}$ , dab, cfe- (mer)                                             | (59.035 MHz)             | 7032 | 3384                  | 95       |
| [Co(dien) <sub>2</sub> ] <sup>3+</sup> , dab, cfe- (mer)                          | (94.457 MHz)             | 7032 | 3468                  | 95       |
| $[Co(NH_3)_3(NO_2)_3]$ , mer, /MeCN                                               | (94.457 MHz)             | 7033 | 314                   | 96       |
| $[Co(NH_3)_3(NO_2)_3]$ , mer, /MeCN                                               | (59.035 MHz)             | 7038 | 182                   | 96       |

| Complex                                                                                    |              | σ(1) | Width (Hz) | Lit. No. |
|--------------------------------------------------------------------------------------------|--------------|------|------------|----------|
| [Co(S,C-(pyrr)),(S,C(pip)]                                                                 |              | 7060 |            | 111      |
| [Co(S,C-(pyrr)),(S,CN(Me),)]                                                               |              | 7070 |            | 111      |
| [Co(S,CN(CH,),),]                                                                          |              | 7074 |            | 25       |
| [Co(phen)] <sup>3+</sup>                                                                   |              | 7080 | 500        | 22       |
| [Co(NH <sub>1</sub> ) <sub>4</sub> (NO <sub>2</sub> ) <sub>2</sub> ] <sup>+</sup> , trans- |              | 7080 | 500        | 22       |
| [Co(NH <sub>2</sub> ),(NO <sub>2</sub> ),] <sup>+</sup> , cis-                             |              | 7080 | 800        | 22       |
| $[Co(en), Cl_{2}]^{+}$ , trans- (*)                                                        |              | 7109 |            | 7        |
| $[Co(en)_{3}]^{3+}$                                                                        |              | 7120 |            | 29       |
| $[Co(en)_{3}]^{3+}$                                                                        |              | 7124 |            | 86       |
| [Co(en),(dicyandiamide)Cl] <sup>+</sup>                                                    |              | 7130 |            | 69       |
| $[Co(en)_{7}(CO_{3})]^{+}(*)$                                                              |              | 7131 |            | 7        |
| [Co(en)] <sup>3+</sup>                                                                     |              | 7144 |            | 68       |
| $[Co(en)_{1}]^{3+}$                                                                        |              | 7144 |            | 25       |
| $[Co(en)_{3}]^{3+}$                                                                        | (94.457 MHz) | 7145 | 117        | 95       |
| $[Co(en)_{3}]^{3+}$                                                                        | (21.252 MHz) | 7146 | 90         | 95       |
| $[Co(en)_{3}]^{3+}$                                                                        | (94.457 MHz) | 7146 | 100        | 93       |
| $[Co(en)_{3}]^{3+}$                                                                        | (21.252 MHz) | 7146 | 97         | 93       |
| $[Co(en)_3]^{3+}$                                                                          | (21.252 MHz) | 7146 | 90         | 93       |
| $[Co(en)_{3}]^{3+}$                                                                        |              | 7147 |            | 113      |
| $[Co(en)_{3}]^{3+}$                                                                        | (59.035 MHz) | 7148 | 98         | 95       |
| [Co(acacen)(Me)(OH <sub>2</sub> )]                                                         |              | 7140 |            | 45       |
| [Co(acacen)(Me)(OH <sub>2</sub> )]                                                         |              | 7150 |            | 45       |
| $[Co(NH_3)_4(NO_2)]^+$ , trans-                                                            |              | 7150 |            | 8        |
| $[Co(NH_3)_4(NO_2)_2]^+$ , cis-                                                            |              | 7150 |            | 82       |
| [Co(sacaen)( <sup>15</sup> NO)] /DMSO-d <sub>6</sub>                                       |              | 7164 | 6400       | 121      |
| $[Co(en)_3]^{3+}$                                                                          |              | 7177 |            | 7        |
| [Co(NH <sub>3</sub> ) <sub>3</sub> (NO <sub>2</sub> ) <sub>2</sub> Cl]                     |              | 7190 |            | 82       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans-                                                          |              | 7199 |            | 7        |
| [Co(S <sub>2</sub> C-(pyrr)) <sub>3</sub> ]                                                |              | 7200 |            | 115      |
| $[Co(NH_3)_3(NO_2)_3]$ , mer-                                                              |              | 7200 | 500        | 22       |
| $[Co(S_2C-(pyrr))_3]$                                                                      |              | 7200 |            | 112      |
| $[Co(S_2C-(pyrr))_3]$                                                                      |              | 7200 | 1150       | 111      |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /H <sub>2</sub> O                                        | (59.035 MHz) | 7206 | 356        | 96       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /H <sub>2</sub> O                                        | (21.252 MHz) | 7207 | 355        | 96       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /H <sub>2</sub> O                                        | (94.457 MHz) | 7208 | 356        | 96       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /CF <sub>3</sub> COO                                     | Н            |      |            |          |
|                                                                                            | (94.457 MHz) | 7215 | 2588       | 96       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans-                                                          |              | 7220 | 270        | 11       |
| [Co(pn) <sub>3</sub> ] <sup>3+</sup> (isomer mixture)                                      |              | 7220 |            | 7        |
| $[Co(S_2CNH_2)_3]$                                                                         |              | 7223 |            | 86       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /MeOH                                                    | (21.252 MHz) | 7224 | 439        | 96       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /DMSO                                                    | (21.252 MHz) | 7225 | 888        | 96       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /MeCN                                                    | (21.252 MHz) | 7228 | 253        | 96       |
| $[Co(S_2CNH_2)_3]$                                                                         |              | 7231 |            | 25       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /MeCN                                                    | (59.035 MHz) | 7233 | 260        | 96       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /DMSO                                                    | (59.035 MHz) | 7234 | 1085       | 96       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /DMSO                                                    | (94.457 MHz) | 7235 | 1085       | 96       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /MeOH                                                    | (94.457 MHz) | 7236 | 487        | 96       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /MeCN                                                    | (94.457 MHz) | 7238 | 280        | 96       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , trans- /MeOH                                                    | (59.035 MHz) | 7241 | 487        | 96       |
| $[Co(NH_3)_4(NO_2)_2]^+$ , cis- /H <sub>2</sub> O                                          | (59.035 MHz) | 7272 | 356        | 96       |

A. YAMASAKI

TABLE 2b (continued)

| Complex                                                                                          |                                              | σ(1)     | Width (Hz) | Lit. No. |
|--------------------------------------------------------------------------------------------------|----------------------------------------------|----------|------------|----------|
| $[Co(NH_3)_4(NO_3)_3]^+$ , cis- /DMSO                                                            | (21.252 MHz)                                 | 7274     | 1181       | 96       |
| $[Co(NH_1)_1(NO_2)_2]^+$ , cis- /H <sub>2</sub> O                                                | (94.457 MHz)                                 | 7276     | 440        | 96       |
| $[Co(NH_{3}), (NO_{3}), ]^{+}, cis - /H_{3}O$                                                    | (21.252 MHz)                                 | 7277     | 331        | 96       |
| $[Co(NH_3),(NO_3)]^+$ , cis- /CH_COOH                                                            | (94.457 MHz)                                 | 7279     | 1595       | 96       |
| $[Co(NH_{3}),(NO_{3}),]^{+}, cis$                                                                | (*************                               | 7280     | 270        | 11       |
| $[C_0(NH_3),(NO_3)]^+$ , cis- /DMSO                                                              | (59.035 MHz)                                 | 7288     | 1648       | 96       |
| [Co(NH <sub>1</sub> ) <sub>1</sub> (NO <sub>1</sub> ) <sub>1</sub> ] <sup>+</sup> , cis- /DMSO   | (94.457 MHz)                                 | 7290     | 2310       | 96       |
| $[Co(NH_3)_4(NO_3)_3]^+$ , cis-                                                                  | <b>`</b>                                     | 7290     |            | 7        |
| $[Co(en), (NH_1)]^{3+}$ , cis-                                                                   |                                              | 7300     | 200        | 22       |
| [Co(NH <sub>3</sub> ),(NO <sub>3</sub> ),] <sup>+</sup> , cis- /MeOH                             | (21.252 MHz)                                 | 7300     | 326        | 96       |
| [Co(en)] <sup>3+</sup>                                                                           | . ,                                          | 7300     |            | 5        |
| $[Co(NH_1)_1(NO_1)_1]^+$ , cis- /MeCN                                                            | (21.252 MHz)                                 | 7301     | 180        | 96       |
| $[C_0(NH_1), (NO_1)]^+, cis-/MeCN$                                                               | (59.035 MHz)                                 | 7305     | 230        | 96       |
| [Co(NH <sub>1</sub> ),(NO <sub>1</sub> )] <sup>+</sup> , cis- /MeCN(94.4                         | 57 MHz)                                      | 7305     | 320        | 96       |
| [Co(Se <sub>2</sub> C-(pyrr)) <sub>2</sub> ]                                                     | ,                                            | 7310     |            | 115      |
| [Co(NH <sub>1</sub> ) <sub>4</sub> (NO <sub>2</sub> ) <sub>2</sub> ] <sup>+</sup> , cis- /MeOH   | (94.457 MHz)                                 | 7311     | 700        | 96       |
| [Co(NH <sub>1</sub> ),(NO <sub>2</sub> )] <sup>+</sup> , cis- /MeOH                              | (59.035 MHz)                                 | 7316     | 404        | 96       |
| [Co(NH <sub>3</sub> ) <sub>4</sub> (NO <sub>2</sub> ) <sub>2</sub> ] <sup>+</sup> , trans- /MeCN | (94.457 MHz)                                 | 7328(??) | 280        | 96       |
| $[C_0(NO_3)_c]^{3-}$ (**)                                                                        | ````                                         | 7350     |            | 82       |
| $[C_0(NO_2)_c]^{3-}$ (**)                                                                        |                                              | 7350     |            | 8        |
| [Co(en),( <sup>15</sup> NO)], trans-(1)/Me,CO                                                    |                                              | 7357     | 2100       | 121      |
| [Co(en)] <sup>3+</sup>                                                                           |                                              | 7380     | 120        | 22       |
| $[C_0(NH_3)(NO_3)_3(CO_3)]^{2-1}$                                                                |                                              | 7400     |            | 32       |
| $[C_0(NO_3)_6]^{3-}$ (**)                                                                        |                                              | 7400     |            | 5        |
| [[Co(tetraen)],(O,)]4+, (fcdaa',f'bcde')]                                                        | bc'-(***)                                    |          |            |          |
|                                                                                                  | (21.252 MHz)                                 | 7408     | 2354       | 93       |
| $[[Co(tetraen)]_{2}(O_{2})]^{4+}$ (b)-I                                                          | (21.252 MHz)                                 | 7408     | 2354       | 94       |
| $[[Co(tetraen)], (O_j)]^{4+}, (fcdaa', f'bcde')]$                                                | bc'- (***)                                   |          |            |          |
|                                                                                                  | (59.035 MHz)                                 | 7417     | 8500       | 93       |
| $[[Co(tetraen)]_{(O_{1})}]^{++}, (b)-I$                                                          | (59.035 MHz)                                 | 7417     |            | 94       |
| $[C_0(CN), NO_1]^{3-}$ (*)                                                                       | ` ,                                          | 7420     |            | 32       |
| $[Co(tame),]^{3+1}$                                                                              |                                              | 7424     |            | 113      |
| [Co(NH <sub>1</sub> ),NO <sub>2</sub> ] <sup>2+</sup>                                            |                                              | 7440     | 100        | 22       |
| $[C_0(NO_2)_6]^{3-}$ (**)                                                                        |                                              | 7440     | 300        | 22       |
| $[C_0(NO_2)_c]^{3-}$ (**)                                                                        |                                              | 7444     |            | 25       |
| $[[Co(tetraen)]_{2}(O_{2})]^{4+}$ (a)-I                                                          | (21.252 MHz)                                 | 7447     | 777        | 94       |
| $[[Co(tetraen)]_{2}(O_{2})]^{++}, edacf, b- (***)$                                               | (21.252 MHz)                                 | 7447     | 777        | 93       |
| [Co(benacen)(15NO)] /CDCl,                                                                       | <b>(</b> ,                                   | 7449     | 5800       | 121      |
| $[[Co(tetraen)]_{(O_1)}]^{4+}$ , edacf.b- (***)                                                  | (94 457 MHz)                                 | 7455     | 958        | 93       |
| $[[Co(tetraen)]_{2}(O_{2})]^{4+}$ edacf. b- (***)                                                | (59.035 MHz)                                 | 7456     | 967        | 93       |
| [Co(NO <sub>3</sub> ) <sub>2</sub> ] <sup>3-</sup> (***)                                         |                                              | 7458     | *          | 68       |
| $[Co(NH_{3}), NO_{3}]^{2+}$                                                                      |                                              | 7460     |            | 8        |
| $[[Co(tetraen)]_{(0_{1})}]^{4+}, (a)-I$                                                          | (59.035 MHz)                                 | 7479     | 967        | 94       |
| $[[Co(tetraen)]_{2}(O_{2})]^{4+}$ , aedcf, b- (***)                                              | (94.457 MHz)                                 | 7483     | 667        | 93       |
| $[[Co(tetraen)]_{2}(O_{2})]^{4+}$ , aedcf, b- (***)                                              | (59.035 MHz)                                 | 7483     | 553        | 93       |
| $[[Co(tetraen)]_{2}(O_{2})]^{4+}$ , aedcf, b- (***)                                              | (21.252 MHz)                                 | 7484     | 364        | 93       |
| [[Co(tetraen)],(O,)] <sup>4+</sup> . (a)-II                                                      | (21.252 MHz)                                 | 7484     | 364        | 94       |
| $[Co(NH_{3}), NO_{3}]^{2+}$                                                                      | ,= <i>-</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 7490     |            | 15       |
| $[C_0(NO_3)_1]^{3-}$ (**)                                                                        |                                              | 7490     |            | 7        |
| [[Co(tetraen)] <sub>3</sub> (O <sub>3</sub> )] <sup>4+</sup> . (cfed'e' f'b'a'ad                 | ).bc'- (***)                                 |          |            | ·        |
| , (erea e , r b a ad                                                                             | (94 457 MHz)                                 | 7494     | 801        | 03       |
|                                                                                                  | (~                                           | 1777     | 001        | 23       |

233

| TABLE 2b | (continued) |
|----------|-------------|
|----------|-------------|

| Complex                                                                                                                                                                                        | σ(1)                        | )    | Width (Hz) | Lit. No.   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|------------|------------|
| $[Co(NH_3)_5ONO]^{2+}$ (*)                                                                                                                                                                     |                             | 7500 |            | 15         |
| [Co(dien)(NH <sub>3</sub> ) <sub>3</sub> ] <sup>3+</sup> , mer-                                                                                                                                |                             | 7500 |            | 65         |
| $[[Co(tetraen)]_{2}(O_{2})]^{4+}$ (a)-III                                                                                                                                                      | (21.252 MHz)                | 7504 | 485        | 94         |
| $[[Co(tetraen)]_{2}(O_{2})]^{4+}$ (a)-II                                                                                                                                                       | (59.035 MHz)                | 7508 | 753        | 94         |
| $[[Co(en)]_{2}(NH_{2})_{3}]^{3+}$ trans-                                                                                                                                                       | (,                          | 7510 | 400        | 22         |
| $[[Co(tetraen)]_{O_2}]^{4+}$ (dfcaa' edeb'f') b                                                                                                                                                | c'- (***)                   |      |            |            |
| (actual; eccol ; ), o                                                                                                                                                                          | (59.035 MHz)                | 7515 | 1721       | 93         |
| $[[Co(tetraen)]_{(O_{*})}]^{4+}$ (dfcaa' edeb'f') b                                                                                                                                            | (****)                      | 1010 | .,         | ,,,        |
|                                                                                                                                                                                                | (21 252 MHz)                | 7516 | 970        | 03         |
| $[[Co(tetraen)], (O_{\cdot})]^{4+}$ (dfcaa' edeb'f') h                                                                                                                                         | (21.252 MIII2)<br>o'= (***) | 7510 | 210        | 75         |
|                                                                                                                                                                                                | (01/157 MH-)                | 7518 | 1621       | 03         |
| $\left[\left(C_{0}(tetraen)\right),\left(O_{1}\right)\right]^{\frac{1}{2}+}$ (a) III                                                                                                           | (50.025 MHz)                | 7520 | 1021       | 93         |
| $\begin{bmatrix} C_2(N U_1), NO^{12+1} \\ \end{bmatrix}$                                                                                                                                       | (39.033 MITZ)               | 7520 | 1721       | 94         |
| $[CO(NH_3)_5NO_2]^{-1}$                                                                                                                                                                        | (                           | 7520 | 40.5       | 82         |
| $[[Co(tetraen)]_2(O_2)]^{++} (a)^{-1}V$                                                                                                                                                        | (21.252 MHZ)                | 1521 | 485        | 94         |
| $\left[\left[\operatorname{Co}(\operatorname{tetraen})\right]_{2}(O_{2})\right]^{++}(a) - IV$                                                                                                  | (59.035 MHz)                | 7539 | 1721       | 94         |
| $[[Co(dien)(en)]_2(O_2)]^{*+}, abf, de, c- (***)$                                                                                                                                              |                             |      |            | _ · ·      |
|                                                                                                                                                                                                | (59.035 MHz)                | 7552 | 846        | 94         |
| $[[Co(dien)(en)]_2(O_2)]^{4+}$ , edf,ac,b-(***)                                                                                                                                                |                             |      |            |            |
|                                                                                                                                                                                                | (59.035 MHz)                | 7552 | 846        | 93         |
| $[[Co(tetraen)]_2(O_2)]^{++}$ , (dfcaa',edeb'f'),l                                                                                                                                             | bc'- (***)                  |      |            |            |
|                                                                                                                                                                                                | (94.457 MHz)                | 7552 | 3858       | 93         |
| [[Co(dien)(en)],(O <sub>2</sub> )] <sup>++</sup> edf,ac,b- (***)                                                                                                                               |                             |      |            |            |
|                                                                                                                                                                                                | (94.457 MHz)                | 7554 | 1282       | 93         |
| [[Co(dien)(en)],(O <sub>1</sub> )] <sup>++</sup> , abf.de.c- (***)                                                                                                                             |                             |      |            |            |
|                                                                                                                                                                                                | (94.457 MHz)                | 7554 | 1282       | 94         |
| $[[Co(dien)(en)]_{*}(O_{*})]^{4+}$ abf de c- (***)                                                                                                                                             | (,                          |      |            |            |
|                                                                                                                                                                                                | (21.252 MHz)                | 7555 | 760        | 0.1        |
| $[[C_0(dien)(en)] (\Omega_1)]^{4+}$ edf ac b- (***)                                                                                                                                            | (21.202 MILL)               | 1555 | 700        | <i>,</i> , |
|                                                                                                                                                                                                | (21.252 MHz)                | 7555 | 760        | 0.1        |
| $[(C_0(tetraen)] (O_1)]^{4+} dooof h_0(***)$                                                                                                                                                   | (21.252 (0112)              | 1555 | 700        |            |
| $\left[\left( \operatorname{Co}(\operatorname{tetrach})_{12}(\operatorname{Co}_{2})\right)\right] , \operatorname{deach}, \operatorname{be}(\mathbf{C}) \right]$                               | (50.025 MH-)                | 7560 |            | 07         |
| $[(Co(dion)(on)] (O)]^{\frac{1}{2}} dof on h (***)$                                                                                                                                            | (39.033 MIRZ)               | 7300 |            | 93         |
| $\left[\left[\operatorname{Co}(\operatorname{dien})(\operatorname{en})\right]_{2}(\operatorname{O}_{2})\right]  , \operatorname{der}, \operatorname{ac}, \operatorname{b-}(\operatorname{Co})$ | (04.457.)(11.)              | 7660 | 1771       | 03         |
|                                                                                                                                                                                                | (94.457 MHZ)                | /568 | 1661       | 93         |
| $[[Co(tetraen)]_2(O_2)]^{++}, (b)-II$                                                                                                                                                          | (21.252 MHz)                | 7569 | 1311       | 94         |
| $[[Co(dien)(en)]_2(O_2)]^{**}, def, ac, b- (***)$                                                                                                                                              |                             |      |            |            |
|                                                                                                                                                                                                | (59.035 MHz)                | 7569 | 924        | 93         |
| $[[Co(dien)(en)]_2(O_2)]^{++}, ebf, ad, c- (***)$                                                                                                                                              |                             |      |            |            |
|                                                                                                                                                                                                | (59.035 MHz)                | 7569 | 924        | 94         |
| $[[Co(tetraen)]_2(O_2)]^{++}$ , deacf, b- (***)                                                                                                                                                |                             |      |            |            |
|                                                                                                                                                                                                | (21.252 MHz)                | 7569 | 1311       | 93         |
| [[Co(dien)(en)] <sub>2</sub> (O <sub>2</sub> )] <sup>4+</sup> , ebf,ad,c- (***)                                                                                                                |                             |      |            |            |
|                                                                                                                                                                                                | (21.252 MHz)                | 7572 | 850        | 94         |
| [[Co(dien)(en)],(O,)] <sup>1+</sup> , def.ac,b- (***)                                                                                                                                          |                             |      |            |            |
|                                                                                                                                                                                                | (21.252 MHz)                | 7572 | 850        | 93         |
| $[[Co(tetraen)]_{3}(O_{3})]^{4+}$ , deacf, b- (***)                                                                                                                                            | ,                           | . –  |            | -          |
| II (                                                                                                                                                                                           | (94.457 MHz)                | 7576 | 2386       | 93         |
| $[C_0(NH_1), NO_1]^{2+}$                                                                                                                                                                       | (                           | 7576 | 440        | 9.4        |
| $[Co(dhzm_s)] fac_s/C H$                                                                                                                                                                       |                             | 7580 | עדד        | 105        |
| $[(Co(totran)] (O)]^{4+} (b) U$                                                                                                                                                                | (50 025 MIL-)               | 7501 | 1007       | 04         |
| $[[Co(totroop)](O_2)]^{+} (of od'o' f' f' f' - f - f)$                                                                                                                                         | (J7.033 MITZ)               | 1384 | 4087       | 7+         |
| $[[Co(tetraen)]_2(O_2)]^{-1}$ , (cred e', f'b'a'ad),                                                                                                                                           |                             | 7604 | 2022       | 03         |
|                                                                                                                                                                                                | (94.437 MHz)                | 1394 | 3932       | 93         |

TABLE 2b (continued)

| Complex                                                                                                                                                          | σ(1                            | )    | Width (Hz) | Lit. No. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------|------------|----------|
| $[C_0(C,O_4),1]^{3-}$ (*)                                                                                                                                        |                                | 7610 |            | 27       |
| $[Co(en)_{2}(^{15}NO)]_{15}$ (7)                                                                                                                                 |                                | 7612 | 2600       | 121      |
| $[[Co(tetraen)]_{(O_1)}]^{4+}$ , (acff'_a'e'd'ed).                                                                                                               | be'- (***)                     |      |            |          |
|                                                                                                                                                                  | (21.252 MHz)                   | 7614 | 2985       | 93       |
| [[Co(tetraen)],(O,)] <sup>4+</sup> (b)-III                                                                                                                       | (21.252 MHz)                   | 7614 | 2985       | 94       |
| $[C_0(NH_3), NO_3]^{2+}$                                                                                                                                         | ()                             | 7620 | 170        | 11       |
| $[C_0(NO_a)_i]^{3-}$ (**)                                                                                                                                        |                                | 7630 | 50         | 10       |
| $[[Co(tetraen)]_{0}]^{4+}$ (acff', a'e'd'ed).                                                                                                                    | bc'- (***)                     | 1020 |            |          |
|                                                                                                                                                                  | (59.035 MHz)                   | 7632 | 7632       | 93       |
| $[[Co(tetraen)]_{2}(O_{2})]^{4+}$ (acff <sup>*</sup> , a'e'd'ed), h                                                                                              | nc'- (***)                     |      |            |          |
|                                                                                                                                                                  | (94.457 MHz)                   | 7640 | 6386       | 93       |
| $[Co(NH_{2}), NO_{2}]^{2+}$                                                                                                                                      | ())                            | 7642 | 0500       | 113      |
| $[(Co(dien)(en)]_{*}(O_{*})]^{4+}$ aef cd b- (***                                                                                                                | 5                              |      |            | •••      |
|                                                                                                                                                                  | (94.457 MHz)                   | 7650 | 3560       | 93       |
| $[(Co(dien)(en)], (O_{-})]^{4+}$ bef ad c. (***                                                                                                                  | ()-11 <i>37</i> 10112 <i>)</i> | 1050 | 5500       | ,5       |
|                                                                                                                                                                  | )<br>(94.457 MHz)              | 7650 | 3560       | 9.4      |
| $[(Co(dien)(en)] (O)]^{++}$ bef ad c. (***                                                                                                                       | ()+.+ <i>J</i> ()()()()        | 1050 | 5500       | 74       |
|                                                                                                                                                                  | )<br>(21.252 MHz)              | 7652 | 1453       | 0.1      |
| $[(Co(dien)(en)] (O)]^{4+}$ as f of h. (***                                                                                                                      | (21.252 WITE)                  | 1052 | 1455       | 74       |
| $\left[\left(\operatorname{Co}(\operatorname{dien})(\operatorname{en})\right]_{2}(\operatorname{O}_{2})\right] , \operatorname{aer,cu, b-} (\operatorname{Aer})$ | ()<br>()1 )5) MU-)             | 7657 | 1452       | 02       |
| [[Co(dian)(an)] (() )]4+ hof ad a (***                                                                                                                           | (21.252 MITZ)                  | 7652 | 1455       | 95       |
| $[[Co(ulen)(en)]_2(O_2)] , bei,au,e-(au)$                                                                                                                        | (50 025 MII-)                  | 7654 | 2221       | 04       |
| $\ (C_{-}(A_{})) - C_{}(A_{})\  = 0$                                                                                                                             | (39.033 MHZ)                   | 7034 | 2251       | 74       |
| $[[Co(dien)(en)]_2(O_2)]^{-1} aei, cd, b-(+++)$                                                                                                                  | )                              | 7654 | 2221       | 01       |
|                                                                                                                                                                  | (39.035 MHZ)                   | /054 | 2231       | 93       |
| $[[Co(trien)NH_3]_2(O_2)]^{++}$ , e,c(ad1),b- (                                                                                                                  | ····)                          | 7/10 | 1013       | 03       |
|                                                                                                                                                                  | (21.252 MHZ)                   | /633 | 1913       | 93       |
| $[[Co(NH_3)(trien)]_2(U_2)]^+$ , b,e(ad1),c-                                                                                                                     | (pH 10.5) (***)                | 2/11 | 1012       | 04       |
|                                                                                                                                                                  | (21.252 MHZ)                   | /635 | 1913       | 94       |
| [Co(salen)(··NO)]/CDCl <sub>3</sub>                                                                                                                              |                                | /038 | 11700      | 121      |
| $[[Co(NH_3)(trien)]_2(O_2)]^{+}$ , b,e(ad1),c-                                                                                                                   | (pH 4.75) (***)                |      | 17//       |          |
|                                                                                                                                                                  | (21.252 MHz)                   | 7672 | 1766       | 94       |
| $[Co(trien)(NH_3]_2(O_2)]^{++}, e,c(adt),b-($                                                                                                                    | ***)                           |      |            |          |
|                                                                                                                                                                  | (21.252 MHz)                   | 7672 | 1766       | 93       |
| $[Co(tetraen)]_2(O_2)]^{++}$ , (b)-III                                                                                                                           | (59.035 MHz)                   | 7720 |            | 94       |
| [Co(en)(dien)Cl] <sup>2+</sup> , df,abe,c- (***)                                                                                                                 |                                |      |            |          |
|                                                                                                                                                                  | (21.252 MHz)                   | 7758 | 2787       | 93       |
| $[Co(en)(NH_3)_4]^{3+}$ , cis-                                                                                                                                   |                                | 7843 | 325        | 93       |
| $[Co(NH_3)_5NO]^{2+}$                                                                                                                                            | (94.457 MHz)                   | 7865 | 188        | 95       |
| $[Co(NH_3)_5NO]^{2+}$                                                                                                                                            | (21.252 MHz)                   | 7867 | 141        | 95       |
| $[Co(NH_3)_5NO]^{2+}$                                                                                                                                            | (59.035 MHz)                   | 7869 | 162        | 95       |
| [Co(TPP)( <sup>15</sup> NO)]/CD <sub>2</sub> Cl <sub>2</sub>                                                                                                     |                                | 7909 | 4250       | 121      |
| [Co(en)(dien)Cl] <sup>2+</sup> , de,abf,c- (***)                                                                                                                 |                                |      |            |          |
|                                                                                                                                                                  | (21.252 MHz)                   | 7964 | 3194       | 93       |
| [Co(acacen)( <sup>15</sup> NO)] /DMSO-d <sub>6</sub>                                                                                                             |                                | 8001 | 1700       | 121      |
| $[Co(en)_2Cl(NH_2Me)]^{2+}$                                                                                                                                      |                                | 8010 |            | 88       |
| $[Co(en)_2(NC_5H_5)Cl]^+$                                                                                                                                        |                                | 8030 |            | 69       |
| $[Co(NO_2)_6]^{3-}$ (**)                                                                                                                                         |                                | 8060 |            | 7        |
| $[Co(salen)(NH_3)_2]^+$                                                                                                                                          |                                | 8060 |            | 45       |
| $[Co(NH_3)_6]^{3+}$                                                                                                                                              |                                | 8080 |            | 8        |
| $[Co(NH_3)_6]^{3+}$                                                                                                                                              |                                | 8100 |            | 32       |
| [Co(NH <sub>3</sub> ) <sub>6</sub> ] <sup>3+</sup>                                                                                                               |                                | 8100 |            | 14       |

| Complex                                                                                   |                       | σ(1)        | Width (Hz) | Lit. No.       |
|-------------------------------------------------------------------------------------------|-----------------------|-------------|------------|----------------|
| [Co(NH <sub>2</sub> ) <sub>4</sub> ] <sup>3+</sup>                                        |                       | 8100        |            | 27             |
| $[Co(NH_{2})_{s}]^{3+}$                                                                   |                       | 8100        |            | 32             |
| $[C_0(NH_4)]^{3+}$                                                                        |                       | 8100        |            | 82             |
| $[C_0(NH_3)_c]^{3+}$                                                                      |                       | 8100        | 220        | 22             |
| $[C_0(NO_{-})_{-}]^{3-}$ (**)                                                             |                       | 8100        |            | 5              |
| $(C_0(salen))^{15}NO)$                                                                    |                       | 8100        |            | 121            |
| $[Co(NH_{\star})]^{3+}$                                                                   |                       | 8114        |            | 86             |
| $[C_0(NH_1)_1)(S_1O_1)]^+$                                                                |                       | 8117        |            | 113            |
| (100(1013)5)(0203)]                                                                       |                       | 0117        |            | 115            |
|                                                                                           | (21.252 MHz)          | 8131        | 2231       | 03             |
| $I(C_0(a_2))$ (N(CS)) (O)) <sup>2+</sup> ad cf e b.                                       | (21.252 MILL)         | 0151        | 2231       | ,,             |
| [[Co(en) <sub>2</sub> (I(C3)] <sub>2</sub> (O <sub>2</sub> )] , au, ci, e, o <sup>2</sup> | (04 457 MH-)          | <b>9174</b> | 2522       | 07             |
| $(C_{-}(N)O_{-}) = (\pm \pm)$                                                             | (94.4 <i>31</i> MITZ) | 0154        | 2322       | 73<br>22       |
| $\begin{bmatrix} CO(NO_2)_6 \end{bmatrix}^2  (\uparrow\uparrow)$                          | (21.252.) (11-)       | 8160        | 400        | 22             |
| $[Co(en)_2(SCN)_2]^2$ , ad, ci, b, e-                                                     | (21.252 MHZ)          | 8101        | 2550       | 93             |
| $[Co(Denacen)(^{**}NO)]/CD_2Cl_2$                                                         |                       | 8170        | 2550       | 121            |
| $[Co(NH_3)_5(HIM)]^3$                                                                     |                       | 8170        | 230        | 116            |
| $[Co(NH_3)_6]^{5+} - \{^{15}N_6\}$                                                        |                       | 8171        | 102        | 68             |
| $[Co(NH_3)_6]^{3+}$                                                                       |                       | 8174        | 183        | 95             |
| $[Co(NH_3)_6]^{3+}$                                                                       |                       | 8175        |            | 25             |
| $[Co(NH_3)_6]^{3+}$                                                                       |                       | 8175        | 172        | 95             |
| $[Co(NH_3)_6]^{3+}$                                                                       |                       | 8175        | 172        | 93             |
| $[Co(NH_3)_6]^{3+}$                                                                       |                       | 8176        | 183        | 95             |
| $[Co(NH_3)_5SCN]^{2+}$                                                                    |                       | 8177        |            | 113            |
| $[Co(NH_3)_6]^{3+}$                                                                       |                       | 8178        |            | 68             |
| $[Co(NH_3)_5(MeIm)]^{3+}$                                                                 |                       | 8178        | 240        | 116            |
| $[Co(en)_2(m-tol)Cl]^+$                                                                   |                       | 8180        |            | 69             |
| $[Co(en)_2Cl(NH_2C_6H_4OMe, o-)]^{2+}$                                                    |                       | 8180        |            | 88             |
| $[Co(NH_3)_4(NO_2)Cl]^{2+}$ , trans-                                                      |                       | 8180        |            | 82             |
| [Co(en) <sub>2</sub> ( <i>m</i> -anisidine)Cl] <sup>+</sup>                               |                       | 8180        |            | 69             |
| $[Co(NH_3), NCS]^{2+}$                                                                    |                       | 8200        |            | 15             |
| $[Co(NH_3)_6]^{3+}$                                                                       |                       | 8206        |            | 113            |
| $[Co(NH_3)_5(HIm)]^{3+}/MeOH$                                                             |                       | 8208        | 350        | 116            |
| [Co(en),(p-anisidine)Cl] <sup>+</sup>                                                     |                       | 8210        |            | 69             |
| [Co(en), (m-chloroaniline)Cl] <sup>+</sup>                                                |                       | 8210        |            | 69             |
| [Co(NH <sub>3</sub> ) <sub>4</sub> (MeIm)] <sup>3+</sup> /MeOH                            |                       | 8215        | 390        | 116            |
| [Co(NH <sub>1</sub> ) <sub>2</sub> ] <sup>3+</sup>                                        |                       | 8218        |            | 7              |
| [Co(en)_(o-phenetidine)Cll <sup>+</sup>                                                   |                       | 8220        |            | 69             |
| $[Co(en)_{2}Cl(NH_{2}C_{2}H_{2}Me_{2}p_{2})]^{2+}$                                        |                       | 8230        |            | 88             |
| $[Co(NH_2)_c(NC_cH_c)]^{3+}/Me_2CO$                                                       |                       | 8245        | 2200       | 116            |
| $[Co(en)_{\circ}Cl(NH_{\circ}C_{\circ}H_{\circ}OEt_{\circ}P_{\circ})]^{2+}$               |                       | 8260        |            | 88             |
| $[Co(en)_{2}Cl(NH_{2}Ph)]^{2+}$                                                           |                       | 8260        |            | 88             |
| $[C_0(NH_*), (NC_*H_*)]^{3+}$ /MeOH                                                       |                       | 8272        | 1700       | 116            |
| $[(Co(en)_{(NCS)}]_{(O_{2})}]^{2+}$ as cf d b-                                            |                       | 02/2        |            |                |
|                                                                                           | (94 457 MHz)          | 8279        | 4964       | 93             |
| $[Co(NH_a), (OH_a)(NO_a)]^2 + cis-$                                                       | (2                    | 8300        |            | 82             |
| $\frac{1}{(C_0(TPP)(HIm))^+} / M_0 OH(CO)$                                                |                       | 8300        | 500        | 116            |
| [Co(en) (menhanatidina)Cll <sup>+</sup>                                                   |                       | 8300        | 200        | 60             |
| $[C_0(TPD)(UIm)]^{+}(M_0(U(PE)))$                                                         |                       | 8300        | 430        | 116            |
| $[C_0(NH_1)(\Omega H_2)] / M(OR(DF_4))$                                                   |                       | 8300        | 00         | 10             |
| $\left[ C_{2}(NH_{3})_{5}(On_{2})\right]^{-1}$                                            |                       | 0300        |            | 14             |
| $[Co(Nn_3)_6]^{-1}$                                                                       |                       | 0300        |            | <u>ј</u><br>АБ |
| [Co(acacen)(NH <sub>3</sub> ) <sub>2</sub> ]                                              |                       | 0068        |            | 40             |

TABLE 2b (continued)

| Complex                                                              | ·····                            | σ(I)  | Width (Hz) | Lit. No.   |
|----------------------------------------------------------------------|----------------------------------|-------|------------|------------|
| [Co(TPP)(HIm),] <sup>+</sup> /MeOH(BPh.)                             |                                  | 8302  | 700        | 116        |
| [Co(NH <sub>3</sub> ) <sub>6</sub> (OH <sub>3</sub> )] <sup>3+</sup> |                                  | 8310  |            | 15         |
| $[Co(tn)_{3}]^{3+}$                                                  |                                  | 8312  |            | 86         |
| [Co(en)(NCS),SCN],(en)], ad,bc,f,e-                                  |                                  |       |            |            |
| · · · · · · · · · · · · · · · · · · ·                                | (94.457 MHz)                     | 8313  | 871        | 93         |
| $[Co(NH_3)_5NCS]^{2+}$                                               |                                  | 8328  | 196        | 93         |
| [Co(pn) <sub>3</sub> ] <sup>3+</sup> (isomer mixture)                |                                  | 8339  |            | 68         |
| $[Co(TPP)(HIm)_2]^+$ /MeCN (ClO <sub>4</sub> )                       |                                  | 8345  | 330        | 116        |
| [Co(NH <sub>3</sub> ) <sub>5</sub> NCS] <sup>2+</sup>                |                                  | 8345  |            | 113        |
| $[Co(NH_3)(NO_2)_3(C_2O_4)]^{2-1}$                                   |                                  | 8350  |            | 32         |
| $[Co(NH_3)_6]^{3+}$                                                  |                                  | 8350  | ca. 50     | 10         |
| [Co(en)(NCS) <sub>2</sub> SCN] <sub>2</sub> (en)], cd,af,b,e-        |                                  |       |            |            |
|                                                                      | (94.457 MHz)                     | 8350  | 12064      | 93         |
| $[Co(NH_3)_2(C_2O_4)(NO_2)_2]^-$                                     |                                  | 8350  |            | 27         |
| $[Co(TPP)(MeIm)_2]^+ /MeOH(BPh_4)$                                   |                                  | 8354  | 1000       | 116        |
| $[Co(TPP)(MeIm)_2]^+ /MeOH(BF_4)$                                    |                                  | 8355  | 920        | 116        |
| $[Co(TPP)(MeIm)_2]^+ /MeOH(ClO_4)$                                   |                                  | 8355  | 860        | 116        |
| $[Co(TPP)(HIm)_2]^+ / C_2 H_4 Cl_2(ClO_4)$                           |                                  | 8360  | 1600       | 116        |
| $[Co(TPP)(HIm)_2]^+ /Me_2CO(ClO_4)$                                  |                                  | 8360  | 330        | 116        |
| $[[Co(salen)]_2O_2(H_2O)_2]$                                         |                                  | 8365  | 13249      | 93         |
| $[[Co(salen)]_2O_2(DMSO)_2]$                                         |                                  | 8367  | 13287      | 93         |
| $[[Co(salen)]_2O_2(DMSO)_2]$                                         |                                  | 8367  | 13287      | 94         |
| $[Co(TPP)(MeIm)_2]^+ /MeCN(ClO_4)$                                   |                                  | 8368  | 500        | 116        |
| $[[Co(salen)]_2O_2(DMSO)_2]$                                         |                                  | 8369  | 12854      | 93         |
| $[[Co(salen)]_2O_2(DMSO)_2]$                                         |                                  | 8369  | 12854      | 94         |
| $[[Co(salen)]_2O_2(DMF)_2]$                                          |                                  | 8375  | 13624      | 93         |
| $[[Co(salen)]_2O_2(H_2O)_2]$                                         |                                  | 8381  | 13158      | 93         |
| $[[Co(en)_2(SCN)]_2(O_2)]^{2+}$ , ae, df, b, c-                      |                                  |       |            |            |
|                                                                      | (59.035 MHz)                     | 8385  | 1266       | 94         |
| $[[Co(en)_2(SCN)]_2(O_2)]^{2+}$ , ad, cf, e, b-                      |                                  |       |            |            |
|                                                                      | (94.457 MHz)                     | 8389  | 1400       | 93         |
| $[[Co(1PP)(HIm)_2]^+/CH_2Cl_2(ClO_4)]$                               |                                  | 8389  | 1000       | 116        |
| $[[Co(en)_2(SCN)]_2(O_2)]^{2+}$ , ae,df,b,c-                         |                                  |       |            |            |
|                                                                      | (94.457 MHz)                     | 8391  | 2500       | 94         |
| $[Co(TPP)(MeIm)_2]^+ / C_2H_4Cl_2(ClO_4)$                            |                                  | 8392  | 1600       | 116        |
| $[Co(TPP)(HIm)_2]^*/THF(ClO_4)$                                      |                                  | 8392  | 660        | 116        |
| $[[Co(en)_2(SCN)]_2(O_2)]^{2+}$ , ad, ct, e, b-                      | (AL A (A ) (III )                | 0.207 |            |            |
|                                                                      | (21.252 MHz)                     | 8396  | 1230       | 93         |
| $[Co(1PP)(MeIm)_2]^+/1HF(ClO_4)$                                     |                                  | 8401  | 1000       | 116        |
| $[Co(1PP)(MeIm)_2]^+/Me_2CO(CIO_4)$                                  |                                  | 8409  | 500        | 116        |
| $[Co(1PP)(MeIm)_2]^+/CH_2CI_2(CIO_4)$                                |                                  | 8443  | 1000       | 116        |
| $[Co(NH_3]_5NH_2OSO_2]^{2/3}$                                        |                                  | 8444  | 1 (000     | 113        |
| $[Co(3-MeOsalox)_2(^{10}NO)]/DMSO-d_6$                               |                                  | 8446  | 16800      | 121        |
| $[Co(ketox)(^{*}NO)]/CDCl_3$                                         |                                  | 8478  | 240        | 121        |
| $[[Co(en)_2(SCN)]_2(O_2)]^2$ , ab, di, e, c-                         | (0.5. <b>1.5.7. ). (1.1</b> . ). | 0.400 | (1)(2)     | <u>.</u> . |
|                                                                      | (95.457 MHZ)                     | 8499  | 6163       | 94         |
| $[[Co(en)_2(SCN)]_2(O_2)]^{-1}$ , ae, ci, d, b-                      | (04 467 MIL)                     | 0501  | 12/1/      | 03         |
| $[(C_{2}(a_{2})) (C_{2})] (C_{2})^{2} + -1 = 4$                      | (94.457 MHZ)                     | 8501  | 13646      | 93         |
| $[[(O(en)_2(SCN)]_2(O_2)]^{-1}, ab, di, e, c-$                       | (50.035.1411-)                   | 0500  | 4700       | 04         |
| IC NILLY KOLYND Y BE CON O                                           | נגט.עכן MHZ)                     | 8502  | 4700       | 94         |
| $[[CO(INH_3)_3](OH)(INO_2)_2]^{-1}, \{CON_4O_2$                      | 1                                | 8520  | 4150       | 20         |

| mplex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | σ(1) | Width (Hz) | Lit. No. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|------------|----------|
| (salox)( <sup>15</sup> NO)] /CDCl,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · · | 8586 | 3000       | 121      |
| $p(en)(NCS), l(en)(O_3)], ac. df. e. b-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |      |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (94.457 MHz)                          | 8591 | 6951       | 93       |
| o(en)(NCS),](en)(O,)], ac.df.c.b-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (************                         |      |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (21.252 MHz)                          | 8597 | 1742       | 93       |
| o(NH <sub>2</sub> )_SCN1 <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (21.252 MHz)                          | 8600 | 784        | 93       |
| $\gamma(en)(NCS)(SCN)]_{(en)}(O_3)]_{ad.c.f.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e.b-                                  | 0000 |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (94.457 MHz)                          | 8664 | 7023       | 93       |
| $(en) C (NH C H OMe n-) l^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | () ((10) ((11)2)                      | 8670 | 1025       | 88       |
| $(NH (CH) NH ) 1^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 8670 |            | 97       |
| $(NH_2)(N_1)^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (21 252 MHz)                          | 8671 | 172        | 91       |
| $(N(13)_5(13)_1)^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (21.252 (4112)                        | 8681 | 172        | 113      |
| $(NH_3)_5(N_3)_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 8700 |            | 27       |
| $(NH_3)_5 ONO_3^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 8700 |            | 02       |
| $(N\Pi_3)_5\Gamma_1^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 8710 |            | 15       |
| $([N\Pi_3)_5 DI]^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | 8710 |            | 60       |
| $(en)_2(o-cnioroannine)(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 8710 |            | 15       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 8720 |            | 15       |
| $(en)_2(C_2O_4)J^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 8731 |            | 113      |
| (NH <sub>3</sub> ) <sub>5</sub> OSO <sub>3</sub> ] <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 8750 |            | 15       |
| (NH <sub>3</sub> ) <sub>5</sub> ClJ <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 8750 |            | 15       |
| $(OEP)(HIm)_2]^+ /MeOH(BF_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 8753 | 130        | 116      |
| (en) <sub>2</sub> Cl <sub>2</sub> ] <sup>+</sup> , trans- /MeCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (21.252 MHz)                          | 8754 | 3672       | 96       |
| $(NH_3)_5]_2(O_2)]^{4+} / 6M NH_4OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (21.252 MHz)                          | 8759 | 1172       | 93       |
| $(NH_3)_5]_2(O_2)]^{4+}/6M NH_4OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (21.252 MHz)                          | 8759 | 1172       | 94       |
| $(NH_3)_5 I]^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (21.252 MHz)                          | 8760 |            | 94       |
| $(NH_3)_3 (OH)_2 (NO_2) ^{3+}, [CoN_4O_2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 8760 | 540        | 56       |
| (NH <sub>3</sub> ) <sub>5</sub> SCN] <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 8760 |            | 15       |
| $(NH_3)_{5}I]^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | 8760 | 2100       | 29       |
| $(en)_{2}(N_{3})_{3}^{+}, cis$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (21.252 MHz)                          | 8763 | 986        | 93       |
| $(en)_{Br_{2}}^{+}$ , cis-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (21.252 MHz)                          | 8764 | 5420       | 93       |
| (en),Cl,] <sup>+</sup> , trans- /MeCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (94.457 MHz)                          | 8788 | 5100       | 96       |
| (en),Cl,1 <sup>+</sup> , trans- /MeCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (59.035 MHz)                          | 8797 | 4000       | 96       |
| (OEP)(MeIm),1 <sup>+</sup> /MeOH(BF.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (                                     | 8810 | 230        | 116      |
| $(NH_{2})_{c}Brl^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 8820 | 1750       | 29       |
| $(NH_{2})_{s}Brl^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 8820 |            | 94       |
| $(NH_{*})_{*}(N_{*}) ^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 8821 | 374        | 93       |
| $(en)_C[1]^+$ trans- /MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (94 457 MHz)                          | 8871 | 12920      | 96       |
| (en) CL 1 <sup>+</sup> trans- /MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (94 457 MHz)                          | 8821 | 12920      | 95       |
| (NH) Brl2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ()                                    | 8873 | 1317       | 93       |
| $(A_{3})_{5}$ | (21 252 MHz)                          | 8837 | 0375       | 95       |
| (NH) C (12+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (21.252 MIII2)                        | 8840 | 950        | 11       |
| $(113)_{5} (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (01 457 MH-)                          | 8841 | 17660      | 06       |
| $(\operatorname{SU}_2 \cup \operatorname{SU}_2)$ , <i>trans-</i> / DMISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (94.437 MITZ)                         | 0041 | 17000      | 30       |
| $(111_3)_51]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 0047 | 1750       | 20       |
| $(1)_{13}_{5}_{5}_{1}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (60.025 MUL-)                         | 0030 | 1/30       | 27<br>06 |
| $(en)_2(l_2)^*$ , <i>trans-</i> /MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (59.035 MHZ)                          | 8833 | 10209      | 20       |
| o(en) <sub>2</sub> Cl <sub>2</sub> ], <i>trans-</i> /MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (39.035 MHZ)                          | 8833 | 10209      | 22       |
| o(en) <sub>2</sub> (mal)]'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (01.000.100.5                         | 8870 | 0.275      | 113      |
| o(en) <sub>2</sub> Cl <sub>2</sub> ], trans-/MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (21.252 MHz)                          | 8873 | 9313       | 90       |
| $(S_2P(OEt)_2]_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 8880 |            | 1/       |
| (NH <sub>3</sub> ) <sub>5</sub> Cl] <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (21.252 MHz)                          | 8887 | 1460       | 95       |
| >(NH <sub>3</sub> ) <sub>5</sub> Cl] <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (21.252 MHz)                          | 8887 | 1146       | 94       |

TABLE 2b (continued)

| Complex                                                               |                 | σ(l) | Width (Hz) | Lit. No. |
|-----------------------------------------------------------------------|-----------------|------|------------|----------|
| [Co(NH <sub>3</sub> ) <sub>5</sub> Cl] <sup>2+</sup>                  | (21.252 MHz)    | 8887 | 1460       | 93       |
| $[Co(en)_2CO_3]^+$                                                    | (21.252 MHz)    | 8888 | 2968       | 93       |
| $[Co(NH_3)_sCl]^{2+}$                                                 |                 | 8889 |            | 113      |
| $[Co(NH_3)_5Cl]^{2+}$                                                 | (59.035 MHz)    | 8890 | 1882       | 95       |
| $[Co(NH_3)_5Cl]^{2+}$                                                 | (94.457 MHz)    | 8890 | 1851       | 95       |
| [Co(NH <sub>3</sub> ) <sub>5</sub> Cl] <sup>2+</sup>                  | (59.035 MHz)    | 8890 | 1914       | 94       |
| [Co(NH <sub>3</sub> ) <sub>5</sub> Cl] <sup>2+</sup>                  | (94.457 MHz)    | 8890 | 2887       | 94       |
| [Co(en <sub>2</sub> Cl <sub>2</sub> ] <sup>+</sup> , trans-/DMSO      | (59.035 MHz)    | 8897 | 14180      | 96       |
| [Co(NH <sub>3</sub> ) <sub>5</sub> OCOMe] <sup>2+</sup>               |                 | 8910 |            | 15       |
| $[Co(NH_3)_5Br]^{2+}$                                                 |                 | 8919 |            | 113      |
| [Co(NH <sub>3</sub> ) <sub>5</sub> ONO <sub>2</sub> ] <sup>2+</sup>   |                 | 8930 |            | 15       |
| [Co(NH <sub>3</sub> ) <sub>5</sub> I] <sup>2+</sup>                   |                 | 8940 |            | 15       |
| $[Co(en)_2(C_2O_4)]^+$                                                |                 | 8960 | 3000       | 22       |
| $[Co(en)_2Cl_2]^+$ , trans- $/H_2O$                                   | (94.457 MHz)    | 8960 | 16783      | 96       |
| $[Co(en)_2Cl_2]^+$ , trans- /H <sub>2</sub> O                         | (94.457 MHz)    | 8960 | 16783      | 95       |
| [Co(salox)( <sup>15</sup> NO)] /DMSO-d <sub>6</sub>                   |                 | 8966 | 2700       | 121      |
| $[Co(en)_2Cl_2]^+$ , cis-                                             | (21.252 MHz)    | 8966 | 5126       | 95       |
| $[Co(en)_2Cl_2]^+$ , cis-                                             | (59.035 MHz)    | 8968 | 8483       | 95       |
| $[Co(en)_2Cl_2]^+$ , cis-                                             | (21.252 MHz)    | 8974 | 5126       | 93       |
| $[Co(S_2P(OEt)_2)_3]$                                                 |                 | 8978 |            | 25       |
| $[Co(NH_3)_4(ONO)_2]^+$ , cis-                                        |                 | 8980 |            | 82       |
| [Co(en) <sub>2</sub> Br <sub>2</sub> ] <sup>+</sup> , trans-          | (21.252 MHz)    | 8982 | 7453       | 93       |
| $[Co(en)_2Cl_2]^+$ , cis-                                             | (94.457 MHz)    | 8987 | 9218       | 95       |
| $[Co(en)_2Cl_2]^+$ , trans-                                           |                 | 9000 |            | 26       |
| [Co(NH <sub>3</sub> ) <sub>5</sub> OCO <sub>2</sub> ] <sup>+</sup>    |                 | 9000 |            | 32       |
| $[Co(NH_3)_5OCO_2H]^{2+}$                                             |                 | 9000 |            | 15       |
| [Co(NH <sub>3</sub> ) <sub>5</sub> OCO <sub>2</sub> ] <sup>+</sup>    |                 | 9000 |            | 8        |
| $[Co(S_2P(OEt)_2)_3]$                                                 |                 | 9048 |            | 113      |
| [Co(NH <sub>3</sub> ) <sub>5</sub> (OH <sub>2</sub> )] <sup>3+</sup>  |                 | 9060 |            | 29       |
| [Co(NH <sub>3</sub> ) <sub>5</sub> OCO <sub>2</sub> ] <sup>+</sup>    | (21.252 MHz)    | 9062 | 1947       | 95       |
| [Co(NH <sub>3</sub> )' <sub>5</sub> OCO <sub>2</sub> ] <sup>+</sup>   | (21.252 MHz)    | 9062 | 1947       | 93       |
| [Co(NH <sub>3</sub> ) <sub>5</sub> Cl] <sup>2+</sup>                  |                 | 9070 |            | 8        |
| [Co(NH <sub>3</sub> ) <sub>4</sub> CO <sub>3</sub> ] <sup>2+</sup>    |                 | 9070 |            | 8        |
| $[Co(en)_2Cl(NH_2Et)]^{2+}$                                           |                 | 9080 |            | 88       |
| [Co(NH <sub>3</sub> ) <sub>5</sub> OCO <sub>2</sub> ] <sup>2+</sup>   | (94.457 MHz)    | 9084 | 5395       | 95       |
| [Co(NH <sub>3</sub> ) <sub>5</sub> OCO <sub>2</sub> ] <sup>2+</sup>   | (59.035 MHz)    | 9090 | 3383       | 95       |
| $[Co(en)_2(N_3)_2]^+$ , trans-                                        | (21.252 MHz)    | 9092 | 3500       | 93       |
| $[Co(7-Mesalen)(^{15}NO)]/CD_2Cl_2$                                   |                 | 9100 | 2250       | 121      |
| [Co(NH <sub>3</sub> ) <sub>5</sub> (OH <sub>2</sub> )] <sup>3+</sup>  |                 | 9100 | 2430       | 11       |
| $[Co(NH_3)_5(N_3)]^{2+}$                                              |                 | 9100 | 300        | 22       |
| $[[Co(NH_3)_3](OH)_2(C_2O_4Co(NH_3)_5)]^{5+}$                         | {CoN5O}         | 9100 | broad      | 56       |
| $[[Co(NCS)_4(SCN)]_2(en)]^{4-}$ , acdf,b,e-                           |                 |      |            |          |
| ((C. (ALCC) (CONN. ())) - Late - C                                    | (21.252 MHz)    | 9101 | 180        | 93       |
| $[[\cup ((N \cup 3)_4(3 \cup N)]_2(en)]^{\circ}, D \subset (a, a, b)$ | (21.262.8411-)  | 0101 | 190        | 02       |
| $(C_{+}(\mathbf{M}\mathbf{H})) (O_{+}C)(-\mathbf{M}^{2})^{+}$         | (21.252 MHZ)    | 9101 | 180        | 93       |
| $[C_0(NH_3)_5(O_2CMe)]^{++}$                                          | (04 457 ) (11 ) | 9107 | 1405       | 113      |
| $[Co(NH_3)_5(OH_2)]^{*}$                                              | (94.437 MHZ)    | 9114 | 4405       | 94       |
| $[Co(NH_3)_{S}(UH)^*]$                                                |                 | 9117 | 1150       | 29       |
| $Co(NH_3)_5(UH)$                                                      | (0) 0(0) (0)    | 9120 | 1150       | 11       |
| $[Co(NH_3)_5(OH_2)]^{3/2}$                                            | (21.252 MHZ)    | 9122 | 4005       | 94       |
| [Co(en)(SCN) <sub>3</sub> NCS] <sup>-</sup> , cd,abe,f-               | (21.252 MHz)    | 9124 | 302        | 93       |

| Complex                                                                 |              | σ(1)  | Width (Hz) | Lit, No. |
|-------------------------------------------------------------------------|--------------|-------|------------|----------|
| [Co(NH <sub>3</sub> ) <sub>5</sub> (OH <sub>2</sub> )] <sup>3+</sup>    | (59.035 MHz) | 9130  | 3977       | 94       |
| $[Co(NH_3)_5(C_2O_4)]^+$                                                |              | 9130  |            | 27       |
| $[Co(NH_3)_4CO_3)^+$                                                    |              | 9146  |            | 7        |
| [Co(NH <sub>3</sub> ),(OH <sub>2</sub> )] <sup>3+</sup>                 |              | 9147  |            | 113      |
| [Co(NH <sub>3</sub> ) <sub>3</sub> (OH <sub>2</sub> )] <sup>3+</sup>    |              | 9147  | 4196       | 93       |
| [Co(en),Cl,] <sup>+</sup> , trans- /H,O                                 | (59.035 MHz) | 9163  | 13400      | 95       |
| [Co(en),Cl <sub>2</sub> ] <sup>+</sup> , trans- /H <sub>2</sub> O       | (59.035 MHz) | 9163  | 13400      | 96       |
| $[Co(NH_3)_4(N_3)_3]^+$ , trans-                                        |              | 9170  | 500        | 22       |
| [Co(NH <sub>3</sub> ) <sub>*</sub> (OH <sub>2</sub> )] <sup>3+</sup>    |              | 9170  | 3000       | 22       |
| [[Co(NH <sub>3</sub> ) <sub>4</sub> ],(OH) <sub>2</sub> ] <sup>++</sup> |              | 9180  | 170        | 56       |
| [Co(en),CO <sub>3</sub> ] <sup>+</sup>                                  |              | 9180  | 3000       | 22       |
| [Co(NH_), OCO_]+                                                        |              | 9184  | 5395       | 95       |
| (Co(NCS),13-                                                            |              | 9187  | 158        | 93       |
| $[C_0(NH_{*}), (C_{*}O_{*})]^+$                                         |              | 9190  |            | 27       |
| $[Co(NH_{2}),OH]^{2+}$                                                  |              | 9196  |            | 113      |
| $[Co(en),Cl(NH,CH(Me),)]^{2+}$                                          |              | 9210  |            | 88       |
| [Co(salphen)( <sup>15</sup> NO)] /DMSO-d                                |              | 9300  | 5700       | 121      |
| $[Co(en),Cl_1]^+$ , trans-/H <sub>2</sub> O                             | (21.252 MHz) | 9333  | 8597       | 95       |
| $[Co(en),Cl_2]^+$ , trans-                                              | (21.252 MHz) | 9333  | 8597       | 93       |
| $[Co(en), Cl_1]^+$ , trans- /H <sub>2</sub> O                           | (21.252 MHz) | 9333  | 8597       | 96       |
| $[[C_0(NH_1)_1]_{(NH_1)}(OH)]^{4+}$                                     | ,            | 9388  |            | 56       |
| [Co(ketox)( <sup>15</sup> NO)] /DMSO-d <sub>6</sub>                     |              | 9390  | 4000       | 121      |
| $[Co(NH_{2}),(N_{2})_{3}]^{+}$ , cis-                                   |              | 9400  | 300        | 22       |
| $[Co(NH_3), (N_3)_3]^+, cis$                                            |              | 9448  | 385        | 93       |
| $[Co(acac)(dbzm-S)_1]cis(S)-Cl-$                                        |              | 9450  |            | 105      |
| $[Co(NH_{2}), F]^{2+}$                                                  |              | 9520  |            | 29       |
| $[C_0(NH_a), (OH_a)Cl]^{2+}$                                            |              | 9600  |            | 14       |
| $[C_0(NH_2), CO_2]^+$                                                   |              | 9620  |            | 32       |
| $[Co(3-MeOsalox)_{*}(^{15}NO)]/CD_{*}Cl_{*}$                            |              | 9623  | 2600       | 121      |
| $[Co(NH_a), Cl_a]^+$ , cis-                                             |              | 9630  | 3400       | 93       |
| $[C_0(NH_{\star}), CO_{\star}]^+$                                       |              | 9680  | 3000       | 22       |
| $[C_0(NH_s), F]^{2+}$                                                   |              | 9701  |            | 113      |
| $[C_0(NH_*), (OH_*)(ONO)]^{2+}$ cis-                                    |              | 9710  |            | 82       |
| $[(C_0(NH_2), 1(OH), NO_2)]^{3+}, \{C_0N_2O_2\}$                        |              | 9729  | 5476       | 95       |
| $[C_0(NH_3), CO_3]^+$                                                   |              | 9730  | 700        | 11       |
| $[C_0(NH_s), CO_s]^+$                                                   |              | 9732  | 3291       | 95       |
| $[C_0(NH_3), CO_3]^+$ cis-                                              |              | 9732  | 3291       | 93       |
| $[C_0(NH_2), CO_2]^+$                                                   |              | 9734  |            | 7        |
| $[[C_0(NH_1)_1(OH)_1(NO_1)]^3^+$ {C_0N_1O_1]                            | ļ            | 9735  | 5173       | 95       |
| $[C_0(NH_1), CO_1]^+$                                                   | i            | 9735  | 5115       | 51       |
| $[C_0(NH_1), CO_2]^+$                                                   |              | 9800  |            | 26       |
| $[C_0(NH_1), C_1]^+$ trans-                                             |              | 9808  | 5857       | 93       |
| $[C_0(NH_{3})_{4}(C_{2})_{1}]^{3+}$                                     |              | 9820  | 3000       | 22       |
| $[Co(5 \cdot C) alox) \cdot (15 \cdot NO)] / DMSO \cdot d$              |              | 9890  | 9000       | 121      |
| $[Co(NH_1), (N_2)]$ fac-                                                |              | 9917  | 250        | 93       |
| [Co(dien)Cl.] wer-                                                      |              | 9968  | 2080       | 93       |
| $[Co(NH_{1}), (OH_{2})]^{3+} cis_{2}(2)$                                |              | 9980  | 2610       | 11       |
| $(C_{0}(NH_{1}))(OH_{1}(NO_{1}))^{3+}$                                  |              | 2200  |            | ••       |
| $\{C_0 N \cap \}$                                                       |              | 10040 | 2510       | 56       |
| ICo(NH_) (OH) ]-Co <sup>16+</sup> ligand (CoN                           | 1.0.3        | 10060 | 6230       | 56       |
| $[Co(NH_3)_3(C_2O_4)Cl]$                                                | 4~2)         | 10080 | 0200       | 27       |

TABLE 2b (continued)

| Complex                                                      | σ(1)  | Width (Hz) | Lit. No. |
|--------------------------------------------------------------|-------|------------|----------|
| [Co(edta)] <sup>-</sup>                                      | 10300 | 4000       | 22       |
| $[C_0(NH_1), (C, O_1),]^-$                                   | 10400 |            | 27       |
| $[[Co(NH_{1})_{1}]_{2}(OH)_{1}]^{3+}$                        | 10410 | 770        | 56       |
| $[[C_0(NH_1)_1](OH)_1(NO_1)]^{3+}, \{C_0N_1O_1\}$            | 10480 | 5860       | 56       |
| $[[Co(NH_{3}), ](OH), (u-C_{4}H_{3}O_{3}Co(NH_{3}), )]^{5+}$ | 10500 | 2320       | 56       |
| $[[Co(NH_2)_2](OH)_2(\mu-fumarato)]^{2+}$                    | 10500 | 2300       | 56       |
| $[Co(NH_{3}), (OH_{3}), 1^{3+}, fac-$                        | 10500 | 350        | 22       |
| $[[C_0(NH_1), 1, (OH), O, C(3-Pv)]^{3+}$                     | 10505 | 3320       | 57       |
| $[(C_0(NH_3)_3)(OH)_3O_3CCF_1]^{3+}$                         | 10510 | 3960       | 57       |
| $[(C_0(NH_3)_1, (OH)_2, O_2, O_2, O_3)^3]$                   | 10510 | 2370       | 57       |
| $[(C_0(NH_{-})_{-}]_{-}(OH)_{-}O_{-}CCH_{-}Br]^{3+}$         | 10515 | 1710       | 57       |
| $[(C_0(NH_1)_1, (OH)_2, C_2, C_2, H_1, NO_2)]^{3+}$          | 10515 | 2490       | 57       |
| $[(C_0(NH_1)_1, (OH)_1, O, C(4, C, H, NO_1)]^{3+}$           | 10515 | 2540       | 57       |
| $[[C_0(NH_3)_3]_2(OH)_2O_2C(4 - C_0H_4(O_2))]^{3+}$          | 10515 | 3200       | 57       |
| $[[C_0(N H_1)] (OH) \cap C(2_P_v)]^{3+}$                     | 10515 | 3570       | 57       |
| $I[C_0(NH_3)_3]_2(OH)_2 O_2 C(2^{-1}y)]$                     | 10515 | 1470       | 57       |
| $((C_{0}(NH_{3})_{3})_{2}(OH_{2}O_{2}CCH_{2}I_{3}))^{6+}$    | 10570 | 3170       | 56       |
| $((C_2(NH_3)_3)_2(OH)_2(O_2C))_2(OH^{-OH})_1$                | 10520 | 3600       | 56       |
| $[(C_0(NH_3)_3)_2(OH)_2(C_2O_4C_0(NH_3)_5)]$                 | 10520 | 2020       | 57       |
| $[[Co(NH_3)_3]_2(OH)_2O_2CCHBI_2]^2$                         | 10520 | 2630       | 54       |
| $[[C_0(NH_3)_3]_2(OH)_2(C_2O_4)]^2$                          | 10520 | 2490       | 50       |
| $([C_0(NH_3)_3]_2(OH)_2O_2C(3-C_6H_4OH)]^2$                  | 10525 | 1000       | 57       |
| $[[Co(Nn_3)_3]_2(On)_2O_2CCHCl_2]^2$                         | 10525 | 2780       | 57       |
| $[[Co(NH_3)_3]_2(OH)_2O_2CEI]^{-1}$                          | 10525 | 740        | 57       |
| $[[Co(NH_3)_3]_2(OH)_2O_2CH]^{3/3}$                          | 10525 | 980        | 57       |
| $[[CO(NH_3)_3]_2(OH)_2O_2C(4-C_6H_4OH)]^{\circ}$             | 10525 | 1000       | 57       |
| $[[Co(NH_3)_3]_2(OH)_2O_2CMe]^3$                             | 10530 | 740        | 57       |
| $[[Co(NH_3)_3]_2(OH)_2O_2CBu]^3$                             | 10530 | 810        | 57       |
| $[[Co(NH_3)_3]_2(OH)_2O_2CCH_2CI]^{3/2}$                     | 10530 | 1640       | 57       |
| $[[Co(NH_3)_3]_2(OH)_2O_2C(4 - C_6H_4COOMe)]^{3/2}$          | 10535 | 2830       | 57       |
| $[[Co(NH_3)_3]_2(OH)_2O_2CCH_2F)]^{3+1}$                     | 10535 | 1560       | 57       |
| $[[Co(NH_3)_3]_2(OH)_2O_2CCCI_3]^3 +$                        | 10535 | 4220       | 57       |
| $[[Co(NH_3)_3]_2(OH)_2O_2CCH_2OH]^{3+}$                      | 10540 | 1320       | 57       |
| $[[Co(NH_3)_3]_2(OH)_2O_2CCBr_3]^{3+1}$                      | 10545 | 5000       | 57       |
| $[[Co(en)(C_2O_4)_2]^-$                                      | 10572 |            | 113      |
| $[Co(NH_3)_3(OH_2)_2Cl]^{2+}$                                | 10600 |            | 14       |
| $[Co(en)(mal)_2]^-$                                          | 10879 |            | 113      |
| $[[Co(NH_3)_3](OH)_2(O_2SO)]^{2+}, \{CoN_3O_3\}$             | 10910 | 440        | 56       |
| $[Co(acac)_2(dbzm-S)] / C_6 H_6$                             | 11350 |            | 105      |
| $[Co(NH_3)_2(CO_3)_2]^-$                                     | 11500 | 3000       | 22       |
| $[Co(NH_3)_2(CO_3)_2]^-$ , cis-                              | 11626 | 820        | 93       |
| $[Co(NH_3)_3(CO_3)Cl]$                                       | 11650 |            | 32       |
| $[Co(NH_3)_2(CO_3)_2]^-$                                     | 11740 |            | 32       |
| $[Co(NH_3)_2(OH_2)_3Cl]^{2+}$                                | 11800 |            | 14       |
| $[Co(NH_3)_2(CO_3)_2]^-$ , trans-                            | 11933 | 4274       | 93       |
| [Co(acac) <sub>3</sub> ] /CHCl <sub>3</sub>                  | 12300 |            | 8        |
| $[Co(acac-NO_2)_3]$                                          | 12394 |            | 68       |
| [Co(bzac) <sub>3</sub> ]                                     | 12400 | 500        | 22       |
| [Co(dbzm) <sub>3</sub> ]                                     | 12400 | 500        | 22       |
| [Co(tfac) <sub>3</sub> ]                                     | 12500 | 160        | 22       |
| [Co(acac-Br),] /CHCl,                                        | 12500 | 500        | 22       |
| [Co(acac),] /CHCl,                                           | 12500 | 110        | 22       |

TABLE 2b (continued)

| Complex                                              | $\sigma(1)$ | Width (Hz) | Lit. No. |
|------------------------------------------------------|-------------|------------|----------|
| [Co(acac) <sub>3</sub> ] /CHCl <sub>3</sub>          | 12520       |            | 25       |
| [Co(acac) <sub>3</sub> ] /CHCl <sub>3</sub>          | 12529       |            | 68       |
| $[Co(dbzm)_3]/C_6H_6$                                | 12530       |            | 105      |
| $[Co(N_3)_6]^{3-}$                                   | 12532       | 207        | 93       |
| $[Co(Mo_6O_{24}H_6]^{3-}]$                           | 12551       |            | 113      |
| $[Co(acac)_3]/C_6H_6$                                | 12630       | 50         | 10       |
| [Co(acac) <sub>3</sub> ] /CHCl <sub>3</sub>          | 12650       |            | 105      |
| $[Co(acac)_3]/C_6H_6$                                | 12680       |            | 7        |
| [Co(trop) <sub>3</sub> ]                             | 12716       |            | 68       |
| [Co(acac) <sub>3</sub> ] /toluene                    | 12730       | 50         | 10       |
| [Co(acac) <sub>3</sub> ] /Me <sub>2</sub> CO         | 12800       | 50         | 10       |
| $[Co(C_2O_4)_3]^{3-}$                                | 12962       |            | 86       |
| $[Co(C_2O_4)_3]^{3-}$                                | 12976       |            | 25       |
| $[Co(C_2O_4)_3]^{3-}$                                | 12987       |            | 113      |
| $[Co(C_2O_4)_3]^{3-}$                                | 13000       | 250        | 22       |
| $[Co(C_2O_4)_3]^{3-}$                                | 13000       |            | 5        |
| $[Co(C_2O_4)_3]^{3-1}$                               | 13040       |            | 7        |
| $[Co(CO_3)_3]^{3-}$                                  | 13900       | 250        | 22       |
| $[Co(CO_3)_3]^{3-}$                                  | 13950       |            | 32       |
| $[Co(mal)_3]^{3-}$                                   | 14017       |            | 113      |
| $[Co(CO_3)_3]^{3-}$                                  | 14070       | 513        | 93       |
| $[Co(CO_3)_3]^{3-}$                                  | 14130       |            | 7        |
| $[Co(OH)_2Co(NH_3)_4)_3]^{6+}$ , central $\{CoO_6\}$ | 14850       | 1710       | 56       |
| [Co(OH <sub>2</sub> ) <sub>6</sub> ] <sup>3+</sup>   | 15047       |            | 113      |
| [Co(OH <sub>2</sub> ) <sub>6</sub> ] <sup>3+</sup>   | 15100       |            | 87       |

TABLE 2c.

Chemical shift: measured from tris(ethylenediamine)cobalt(III) complex cation,  $\sigma(2)$ , and line width data.

| Complex                                            | σ(2) | Width (Hz) | Lit. No. |
|----------------------------------------------------|------|------------|----------|
| $[Co(en)_{3}]^{3+}$                                | 0    | 110        | 42       |
| $\Lambda - cis - [Co((S) - pn)_3]^{3+}$            | 82   | 110        | 42       |
| $\Lambda$ -trans-[Co((S)-pn)] <sup>3</sup>         | 93   | 96         | 42       |
| $\Delta$ -cis-[Co((S)-pn)] <sup>3+</sup> (mixture) | 157  | 310        | 42       |

 TABLE 2d.

 Chemical shift measured from "aqueous hexanitrocobaltate(III)" solution (ppm).

| Complex                                                                                | σ(3) | Width (Hz) | Lit. No. |
|----------------------------------------------------------------------------------------|------|------------|----------|
| $[Co(en),(NO_{3}),]^{+}, cis$ -                                                        |      |            | 16(+)    |
| [Co(tn)(gly)(NO <sub>2</sub> )], ab.dc.e.f-                                            | -9.3 |            | 58       |
| $[Co(NO_2)_{s}]^{3-}(**)$                                                              | 0    |            | 16       |
| $[Co(gly)(NO_{2})_{4}]^{2}$                                                            | 130  | <u> </u>   | 58       |
| [Co(NH <sub>3</sub> ) <sub>2</sub> (gly)(NO <sub>2</sub> ) <sub>2</sub> ], a,b,dc,e,f- | 223  |            | 58       |
| $[Co(gly),(NO_{3}),]^{2-}$ , ae,fb,c,d-                                                | 455  |            | 58       |
| $[Co(NO_2)_6]^{3-}$ (decomp. pr.)                                                      | 570  |            | 16(+)    |

| Complex                                                | σ(3) | Width (Hz) | Lit. No. |
|--------------------------------------------------------|------|------------|----------|
| [Co(NH <sub>3</sub> ) <sub>6</sub> ] <sup>3+</sup>     | 680  |            | 16(+)    |
| $[Co(gly)_{2}(NO_{2})_{2}]^{2-}$ , ae, bf, c, d-       | 781  |            | 58       |
| $[Co(gly),(NO_{2})_{2}]^{2}$ , ae,cf,b,d-              | 872  |            | 58       |
| $[Co(gly)_{2}(NO_{2})_{2}]^{2-}$ , ae, fc, b, d-       | 967  |            | 58       |
| [Co(tn)(gly) <sub>2</sub> ] <sup>+</sup> , ae, bf, cd- | 1060 |            | 58       |
| $[Co(en), CO_3]^+$                                     | 1430 |            | 16(+)    |
| [Co(tn)(gly),] <sup>+</sup> , ae,bc,df-                | 1525 |            | 58       |
| $[Co(tn)(gly)_2]^+$ , ae, fb, cd-                      | 1664 |            | 58       |
| [Co(gly),], fac-                                       | 2157 |            | 58       |
| [Co(gly)], mer-                                        | 2450 |            | 58       |
| $[Co(gly), (C, O_4]^-, ae, bf, cd-$                    | 3128 |            | 58       |
| $[Co(gly), C, O_A]^-$ , ae, bc, df-                    | 3181 | <u> </u>   | 58       |
| [Co(gly),CO <sub>3</sub> ] <sup>-</sup> , ae,bf,cd-    | 3472 |            | 58       |
| [Co(gly),CO <sub>3</sub> ] <sup>-</sup> , ae,bc,df-    | 3495 |            | 58       |
| $[Co(gly)_2C_2O_4]$ , ae, fb, cd-                      | 3600 |            | 58       |

TABLE 2d (continued)

(+) The original chemical shift data in reference 16 should be read as one order larger values (as pointed out by Cohen<sup>53</sup>) to explain the spectral charts.

| TABLE 2e.                                                              |                 |
|------------------------------------------------------------------------|-----------------|
| Chemical shift from [Co(NH <sub>3</sub> ) <sub>6</sub> ] <sup>3+</sup> | standard (ppm). |

| Complex                                                      | σ(4)   | Width (Hz) | Lit. No. |
|--------------------------------------------------------------|--------|------------|----------|
| $[Co(CN)_{6}]^{3}$                                           | -8100  | 200        | 73       |
| $[Co(dmgH), CH_3(P(OMe)_3)]$                                 | -6570  |            | 49       |
| $[Co(dmgH)_2CH_3(PBu_3)]$                                    | - 5530 |            | 49       |
| $[Co(dmgH)_2CH_3(CN(Me))]$                                   | - 5470 |            | 49       |
| [Co(dmgH) <sub>2</sub> CH <sub>3</sub> (PPh <sub>3</sub> )]  | - 5350 |            | 49       |
| $[Co(dmgH)_2CH_3(P(p-C_6H_4OMe)_3)]$                         | - 5340 |            | 49       |
| $[Co(dmgH)_2CH_3(AsPh_3)]$                                   | - 5200 |            | 49       |
| $[Co(dmgH)_2CH_3(SMe_2)]$                                    | - 4960 |            | 49       |
| $[Co(NH_3)_3(CN)_3], fac-$                                   | -4820  | 1000       | 73       |
| $[Co(dmgH)_2CH_3(HIm)]$                                      | 4560   |            | 49       |
| $[Co(dmgH)_2CHCl_2(S(Me)_2)]$                                | -4560  |            | 49       |
| $[Co(dmgH)_2Cl(P(OMe)_3)]$                                   | -4550  |            | 49       |
| $[Co(dmgH)_2CH_3(NC_5H_5)]$                                  | -4490  |            | 49       |
| $[Co(dmgH)_2CH_3(\gamma-pic)]$                               | -4490  |            | 49       |
| $[Co(dmgH)_2CH_3(\beta-pic)]$                                | -4490  |            | 49       |
| $[Co(dmgH)_2CH_3(NMe_3)]$                                    | -4360  |            | 49       |
| [Co(NH <sub>3</sub> ) <sub>3</sub> (CN) <sub>3</sub> ], mer- | -4100  | 2500       | 73       |
| [Co(dmgH) <sub>2</sub> CH <sub>3</sub> (CH <sub>3</sub> OH)] | - 4040 |            | 49       |
| $[Co(dmgH)_2Cl(P(n-Bu)_3)]$                                  | -4020  |            | 49       |
| [Co(dmgH) <sub>2</sub> Cl(PPh <sub>3</sub> )]                | -3360  |            | 49       |
| $[Co(NH_3)_4(CN)_2]^+$ , cis-                                | - 3080 | 2800       | 73       |
| $[Co(dmgH)_2Cl(NC_5H_5)]$                                    | - 2980 |            | 49       |
| $[Co(NH_3)_4(CN)_2]^+$ , trans-                              | -2100  | 4000       | 73       |
| $[Co(en)(thios)_2]^+$                                        | -2020  |            | 101      |
| $[Co(en)_2(NO_2)_2]^+$ , trans-                              | - 1880 | 1100       | 51       |
| $[Co(en)_2(NO_2)_2]^+$ , cis-                                | - 1700 | 700        | 51       |
| $[Co(en)(NH_3)_2(OH)_2]^+$ , cis-,cis-                       | -1670  | 230        | 39       |

TABLE 2e (continued)

| Complex                                                      | σ(4)   | Width (Hz) | Lit. No. |
|--------------------------------------------------------------|--------|------------|----------|
| $\Box_{0}(en)(NH_{3})_{3}(OH)_{3}^{+}, cis_{3}trans_{3}^{-}$ | -1660  | 560        | 39       |
| $Co(dien), 1^{3+}, dab, cfe-(mer)$                           | - 1628 | 450        | 108      |
| $Co(en)_{2}NO_{2})_{1}^{+}$ , trans-                         | -1590  | 600        | 73       |
| $Co(en)(NH_{2})_{2}(OH)_{1}^{+}$ , trans-                    | -1580  | 230        | 39       |
| $Co(en)_{(thios)}^{2+}$                                      | -1510  |            | 101      |
| $Co(en)_2(NO_2)_1^+$ , cis-                                  | -1510  | 500        | 73       |
| $Co(en)_2(NO_2)_2$ <sup>+</sup> , trans-                     | -1510  | 1700       | 71       |
| $C_0(NH_3)_2CN ^{2+}$                                        | -1450  | 3000       | 73       |
| $Co(en)(tn) (NO_3)_3^{+}$ , trans-                           | -1400  | 1400       | 71       |
| $Co(en)_{2}(SO_{2})_{2}$                                     | -1395  |            | 101      |
| $Co(en)_3(ThioA-S)_3^{13+}$                                  | -1375  |            | 101      |
| $Co(en)(NO_1)$                                               | -1360  | 400        | 73       |
| $Co(NH_3)_{1}(NO_3)_{1}^{-}$ , trans-                        | -1340  | 1500       | 73       |
| $Co(dien)(S_{2}O_{3})_{1}^{3-}$ , mer-                       | -1312  | 710        | 108      |
| Co(dien) (SCN), 1. mer-                                      | -1276  | 669        | 108      |
| $Co(en)(NH_2)_2(NO_2)_1^+$ , trans-                          | -1275  | 500        | 51       |
| $Co(en)_{*}(NH_{*})(NO_{*}) ^{2+}, cis-$                     | -1265  | 290        | 51       |
| $Co(en)(NH_3)(NO_3)^{2+}$ , c, t-                            | -1260  | 340        | 51       |
| $Co(en)_{(ThioU-S)_{1}}^{3+}$                                | -1240  | • • •      | 101      |
| $Co(dien)_{3}^{3+}, fac_{5}(s_{2}^{2},u_{3}^{2})$            | -1185  | 358        | 108      |
| $Co(NH_3)_1(NO_3)_1$ mer-                                    | -1180  | 800        | 73       |
| $Co(en)_{2}(OH)_{3}^{+}$ , cis-                              | -1150  | 230        | 39       |
| $Co(tn)_2(NO_2)_2$ , trans-                                  | -1140  | 1200       | 73       |
| $Co(tn)_2(NO_2)_2$ , trans-                                  | -1140  | 1200       | 71       |
| $C_0(en)_1(S_0, 0, 1)^-$                                     | -1130  |            | 101      |
| $Co(en)_{2}(OH)_{1}^{\dagger}$ trans-                        | -1130  | 150        | 39       |
| $Co(en)_{2}^{(011)_{21}}$ , mans                             | -1050  |            | 41       |
| $Co(en)_{3}^{3+}$                                            | -1030  | 200        | 73       |
| $Co(en)_{s}(ThioS)^{3+}$                                     | -1025  | 200        | 101      |
| $Co(tn)_{2}(NO_{2})_{1}^{+}$ cis-                            | -1010  | 1400       | 73       |
| $Co(tn)_2(NO_2)_2$ , cis-                                    | -1010  | 1500       | 71       |
| $Co(en)_{2}(ThioA-N.S)_{3}^{3+}$                             | - 998  |            | 101      |
| $Co(mbn)_{1}^{3+}$ , fac-                                    | - 990  | 300        | 62       |
| Co(benacen)(Me)(NC <sub>2</sub> H <sub>2</sub> )]            | -980   |            | 49       |
| $Co(en)_{3}^{3+}$                                            | -980   |            | 72       |
| Co(salen)(Me)]                                               | -975   |            | 21       |
| $Co(mbn)_1^{3+}$ , mer-                                      | -965   | 360        | 62       |
| $Co(NH_3)_1(NO_3)_1^+$ , trans-                              | -960   | 280        | 51       |
| $Co(NH_3),(NO_3),[^+, trans-$                                | -960   | 600        | 73       |
| $Co(1-pn)_{1}^{3+}$ , $\Delta(fac)_{-}^{3+}$                 | -951   | 100        | 62       |
| $Co(NH_1),(NO_1),fac-$                                       | -950   | 200        | 73       |
| $Co(1-pn)_{1}^{3+}$ , $\Delta(mer)_{2}^{3+}$                 | -938   | 100        | 62       |
| $(Co(en)_{1}(NO_{1})_{1})^{+}$ , cis-                        | -930   | 1200       | 71       |
| $C_0(e_1)(NH_*)_*(NO_*)^{2+}$ , mer-                         | -915   | 280        | 51       |
| $(Co(en)(g y)(NO_3)], cis(NO_3), trans(NH_3)-$               | -900   | 7000       | 71       |
| $[Co(en)(NH_{3})(NO_{3})]^{2+}, fac-$                        | -895   | 170        | 51       |
| $[Co(NH_3),(NO_3)]^+$ , cis-                                 | - 895  | 150        | 51       |
| $[Co(dien)(OH)(NO_1)]$ , wer-                                | - 892  | 382        | 108      |
| $[Co(NH_2), (NO_2)_2]^+, cis-$                               | - 890  | 400        | 73       |
| $[Co(1-nn), 1^{3+} A(mer)]$                                  | -863   | 140        | 62       |
| $[Co(1-pn)_{3}]^{3+}$ , $\Lambda(fac)_{-}$                   | -859   | 140        | 62       |
| L = L = F = 231 7 = 2 = 2                                    |        |            |          |

TABLE 2e (continued)

| Complex                                                                                        | σ(4)  | Width (Hz) | Lit. No. |
|------------------------------------------------------------------------------------------------|-------|------------|----------|
| $[Co(en)_2(ThioU-N,S)_2]^{3+}$                                                                 | -830  |            | 101      |
| $[Co(NH_3)(L-ala)(NO_2)_3]^-$ , mer-                                                           | -825  | 3400       | 71       |
| $[Co(NH_3)(L-abu)(NO_2)_3]^-$ , mer-                                                           | - 820 | 4200       | 71       |
| $[Co(NH_3)(L-nva)(NO_2)_3]^-$ , mer-                                                           | 790   | 5400       | 71       |
| [Co(dien)(NCS) <sub>3</sub> ], mer-                                                            | - 783 |            | 108      |
| $[Co(NH_3)(L-val)(NO_2)_3]^-$ , mer-                                                           | - 780 | 5000       | 71       |
| $[Co(en)_2(NH_3)_2]^{3+}$ , trans-                                                             | - 760 | 430        | 51       |
| $[Co(NH_3)(gly)(NO_2)_3]^-$ , mer-                                                             | - 760 | 3300       | 71       |
| [Co(benacen)(Me)]                                                                              | - 730 |            | 49       |
| $[Co(tn)(gly)(NO_2)_2]$ , cis(NO <sub>2</sub> ), trans(NH <sub>2</sub> )-                      | -720  | 7000       | 71       |
| $[Co(en)_2(NH_3)_2]^{3+}$ , cis-                                                               | -710  | 270        | 51       |
| $[Co(NO_2)_6]^{3-}$ (**)                                                                       | -710  | 200        | 73       |
| $[Co(en)(\beta-ala)(NO_2)_2]$ , cis(NO <sub>2</sub> ), trans(NH <sub>2</sub> )-                | -690  | 8000       | 71       |
| $[Co(dien)(NH_3)_3]^{3+}$ , fac-                                                               | -650  | 167        | 108      |
| [Co(ibn) <sub>3</sub> ] <sup>3+</sup> , mer-                                                   | -644  | 600        | 62       |
| $[Co(en)(NH_3)_3OH]^{2+}$ , mer-                                                               | -635  | 430        | 39       |
| $[Co(ibn)_{3}]^{3+}, fac-$                                                                     | -626  | 380        | 62       |
| $[Co(NH_3)_4(SO_3)_7]^-$                                                                       | -615  |            | 101      |
| $[Co(dien)(NH_3)_3]^{3+}$ , mer-                                                               | -611  | 430        | 108      |
| $[Co(en),(acetamide)^2]^{3+}$                                                                  | - 598 |            | 101      |
| [Co(salen)Br(PPh <sub>3</sub> )]                                                               | - 590 |            | 21       |
| $[Co(en),(ThioA-N),]^{3+}$                                                                     | - 585 |            | 101      |
| $[Co(gly)(NO_{2})_{4}]^{2}$                                                                    | - 580 | 1600       | 71       |
| $[Co(en)(NH_3)_3(OH)]^{2+}, fac-$                                                              | - 560 | 180        | 39       |
| [Co(dien)(NCS)], fac-                                                                          | - 542 |            | 108      |
| $[Co(NH_{3}), NO_{3}]^{2+}$                                                                    | - 530 | 300        | 73       |
| $[Co(en), (NCS),]^{+}$                                                                         | - 526 |            | 101      |
| $[C_0(NH_1), NO_1]^{2+}$                                                                       | - 525 | 150        | 51       |
| $[Co(en)_{1}(ThioU-N)_{1}]^{3+}$                                                               | - 520 |            | 101      |
| $[Co(NH_{2}), (L-ala)(NO_{2}), ]$ cis(NO_{2}), trans(NH_{2}, NH_{2})-                          | -515  | 3000       | 71       |
| $[Co(NH_3)_2(L-abu)(NO_3)_3]$ , $cis(NO_3)_3$ , $trans(NH_3,NH_3)_3$                           | -510  | 3200       | 71       |
| $[Co(en),(urea),]^{3+}$                                                                        | - 501 |            | 101      |
| $[Co(NH_3), (S,O_3), 1^-$                                                                      | -475  |            | 101      |
| $[Co(NH_3)_3(gly)(NO_3)_3]$ , cis(NO_3), trans(NH_3,NH_3)-                                     | -455  | 3600       | 71       |
| $[Co(NH_3)_2(E-3)_2(NO_3)_1]$ , trans $(NO_3)_2$ , cis $(NH_3, NH_3)_2$                        | -440  | 3000       | 71       |
| $[Co(NH_3)_3(L-abu)(NO_3)_3]$ , trans(NO_3), cis(NH_3,NH_3)-                                   | -410  | 3300       | 71       |
| $[Co(NH_{2}),(g v)(NO_{2}),]$ trans(NO <sub>2</sub> ), cis(NH <sub>2</sub> ,NH <sub>2</sub> )- | - 385 | 4200       | 71       |
| $[Co(tn)(\beta-a a)(NO_{3})], cis(NO_{3}), trans(NH_{3})-$                                     | - 380 | 15000      | 71       |
| $[Co(en)(NH_{1})_{1}]^{3+}$                                                                    | - 360 | 230        | 51       |
| $[Co(en)_{a}(g y)]^{2+}$                                                                       | - 350 | -50        | 72       |
| $[Co(L-a]a)_{(NO_{2})_{2}}^{-}$ , cis(NO <sub>2</sub> ), trans(NH <sub>2</sub> )-              | -275  | 4000       | 71       |
| $[Co(en)_{*}(NH_{*})(N_{*})]^{+}$                                                              | -255  | 700        | 51       |
| $[Co(L-val), (NO_s)_1]^-$ , cis(NO_s), trans(NH_s)-                                            | -248  | 11000      | 71       |
| $[Co(aibu),(NO_{2}),1^{-}, cis(NO_{2}), trans(NH_{2})]$                                        | -243  | 10000      | 71       |
| $[Co(L-abu)_{1}(NO_{2})_{1}]^{-}$ , cis $(NO_{2})_{1}$ , trans $(NH_{2})_{1}$ .                | -240  | 10000      | 71       |
| $[Co(L-leu)_s(NO_s)_1^-, cis(NO_s)_trans(NH_s)_s$                                              | -232  | 13000      | 71       |
| $[Co(\beta-a a)(NO_3), 1^2$                                                                    | -230  | 3000       | 71       |
| $[Co(L-nva),(NO_3)]^-$ , cis $(NO_3)$ , trans $(NH_3)$ .                                       | -225  | 10000      | 71       |
| $[Co(L-ilen),(NO_{*})]^{-}$ , $cis(NO_{*})$ , trans(NH_).                                      | - 220 | 14000      | 71       |
| $[Co(en)_{*}(NH_{*})OH]^{2+}$ cis-                                                             | _220  | 200        | 30       |
| $[Co(dien)(en)(OH)]^{2+}$ (*) fac-                                                             | - 192 | 286        | 108      |
| [                                                                                              | . / 4 | 200        | 100      |

TABLE 2e (continued)

| Complex                                                                                                     | σ(4)   | Width (Hz)  | Lit. No. |
|-------------------------------------------------------------------------------------------------------------|--------|-------------|----------|
| $[Co(L-nleu)_2(NO_2)_2]^-$ , cis(NO <sub>2</sub> ), trans(NH <sub>2</sub> )-                                | 180    | 14000       | 71       |
| $[Co(gly)_2(NO_2)_2]^-$ , cis(NO <sub>2</sub> ), trans(NH <sub>2</sub> )-                                   | -170   | 3500        | 71       |
| [Co(dien)(OH)(SCN) <sub>2</sub> ], mer-                                                                     | -162   |             | 108      |
| [Co(dien)(OH)(NCS) <sub>2</sub> ], mer-                                                                     | -129   |             | 108      |
| [Co(dien)(en)(OH)] <sup>2+</sup> , mer-                                                                     | -120   | 588         | 108      |
| $[Co(en)_2(NH_3)OH]^{2+}$ , trans-                                                                          | -110   | 180         | 39       |
| $[Co(en)_2(NH_3)Br]^{2+}$ , cis-                                                                            | -110   | 2000        | 51       |
| $[Co(en)_2(NH_3)Cl]^{2+}$ , cis-                                                                            | -100   | 2500        | 51       |
| $[Co(NH_3)_5(SCN)]^{2+}$                                                                                    | -68    | 2000        | 101      |
| $[Co(NH_3)_4((\pm)-ptn)_3]^{3+}$                                                                            | - 39.5 | 196         | 91       |
| $[Co(\Delta(R,R)-ptn]^{3+}$                                                                                 | -34.8  | 197         | 91       |
| $[Co(L-ala)(NO_2)_4]^{-1}$ cis, cis, cis-                                                                   | -30    | 1200        | 71       |
| $[Co(NH_3)_6]^{3+}$                                                                                         | 0      | 50          | 51       |
| $[Co(NH_3)_6]^{3+}$                                                                                         | Õ      | 200         | 73       |
| [Co(dien)(en)(OH)] <sup>2+</sup> (**), fac-                                                                 | 18     | 311         | 108      |
| $[Co(NH_3)_4(meso-ptn)]^{3+}$                                                                               | 18.2   | 160         | 91       |
| $[Co(NH_3)_4)(bdn)]^{3+}$                                                                                   | 21.2   | 144         | 91       |
| $[Co(NH_3)_4(tn)]^{3+}$                                                                                     | 28.2   | 184         | 91       |
| [Co(en),(OH,)ThioU)] <sup>3+</sup>                                                                          | 30     | <b>I</b> OT | 101      |
| $[Co(L-ala),(NO_{2})]^{-}$ , trans(NO <sub>2</sub> ),cis(NH <sub>2</sub> )-                                 | 60     | 1000        | 71       |
| $[Co(gly),(NO_2),]^-$ , cis.cis.cis-                                                                        | 74     | 1000        | 71       |
| $[Co(\Lambda(R,R)-ptn)_{1}]^{3+}$                                                                           | 85.8   | 124         | 91       |
| $[Co(en)(NH_1)_1(N_1)]^{2+}, fac-$                                                                          | 90     | 370         | 51       |
| $[Co(en)_{2}(NH_{3})(OH_{3})]^{3+}$ , trans-                                                                | 100    | 570         | 51       |
| $[Co(NH_3)_4(mptn)]^{3+}$                                                                                   | 100.3  | 266         | 91       |
| [Co(en),(NH,)OH] <sup>2+</sup> , trans-                                                                     | 110    | 200         | 51       |
| $[Co(en), (OH)(acetamide)]^{2+}$ , cis-                                                                     | 120    |             | 101      |
| [Co(L-ala),(NO <sub>2</sub> )] <sup>-</sup> , trans, trans, trans-                                          | 150    | 6500        | 71       |
| [Co(gly)(β-ala)(NO <sub>2</sub> ) <sub>2</sub> ], cis(NO <sub>2</sub> ), trans(NH <sub>2</sub> )-           | -155   | 5000        | 71       |
| [Co(en),(OH,)(NCS)] <sup>2+</sup>                                                                           | 160    | 2000        | 101      |
| $[Co(tn)_{3}]^{3+}$                                                                                         | 163.9  | 161         | 91       |
| $[Co(gly)_2(NO_2)_2]^-$ , trans(NO_2), cis(NH_2)-                                                           | 177    | 700         | 71       |
| $[Co(tn)_3]^{3+}$                                                                                           | 180    | 200         | 73       |
| $[Co(dien)(OH)(NH_3)_2]^2+, fac-$                                                                           | 192    | 220         | 108      |
| [Co(en),(NH,)(OH,)] <sup>3+</sup> , cis-                                                                    | 200    | 220         | 51       |
| [Co(NH <sub>3</sub> )(L-ala),(NO <sub>2</sub> )], cis(O),trans(NH <sub>2</sub> )-                           | 207    | 7000        | 71       |
| $[Co(NH_3)(L-abu),(NO_3)]$ , cis(O), trans(NH_3)-                                                           | 218    | 8000        | 71       |
| $[Co(en)_{3}(NH_{3})(OH)]^{2+}$ , cis-                                                                      | 220    | 8000        | 51       |
| $[Co(NH_3)(L-nva),(NO_3)], cis(O), trans(NH_3)$ -                                                           | 220    | 10000       | 71       |
| $[Co(NH_3)(L-nleu),(NO_3)], cis(O), trans(NH_3)-$                                                           | 220    | 12000       | 71       |
| $[Co(en)_{,(OH_{2})(urea)}]^{3+}$ , cis-                                                                    | 224    | 12000       | 101      |
| $[Co(en)(NH_2),Br]^{2+}$ , (mer.fac)                                                                        | 240    | 2500        | 51       |
| $[Co(en),(OH)(acetamide)]^{2+}$ , trans-                                                                    | 240    | 2500        | 101      |
| $[Co(en), N_{1})_{1}^{+}$ , cis-                                                                            | 250    | 500         | 51       |
| $[Co(dien)(OH)(NH_3)_3]^{2+}$ , mer-                                                                        | 254    | 387         | 108      |
| [Co(gly),(NO,),] <sup>-</sup> , trans.trans.trans-                                                          | 257    | 507         | 71       |
| $[Co(en)(NH_3),C]^{2+}$ , (mer.fac)                                                                         | 270    | 2500        | 51       |
| [Co(NH <sub>2</sub> )(L-ileu) <sub>2</sub> (NO <sub>2</sub> )], cis(O) trans(NH <sub>2</sub> ) <sub>2</sub> | 280    | 2000        | 71       |
| $[Co(NH_1(g y)(NO_1)]]$ cis(O) trans(NH_1)-                                                                 | 200    | 2000        | 71       |
| [Co(dien)(OH)(NCO)] fac-                                                                                    | 205    | 3000        | /1       |
| $[Co(\beta-abu), (NO_{3})]^{-}, cis(NO_{3}) trans(NH_{3})$                                                  | 295    | 12000       | 71       |
| · · · · · · · · · · · · · · · · · · ·                                                                       | 271    | 12000       | /1       |

TABLE 2e (continued)

| Complex                                                       | σ(4) | Width (Hz)   | Lit. No.  |
|---------------------------------------------------------------|------|--------------|-----------|
| $[Co(\beta-aibu)_2(NO_2)_2]^-, cis(NO_2), trans(NH_2)^-$      | 298  | 12000        | 71        |
| $[Co(NH_3)_5NCS]^{2+}$                                        | 352  |              | 101       |
| $[Co(en)_2(OH_2)(urea)]^{3+}$ , trans-                        | 375  |              | 101       |
| [Co(dien)(OH)(NCO) <sub>2</sub> ], mer-                       | 375  | 293          | 108       |
| $[Co(\beta-ala)_2(NO_2)_2]$ , cis $(NO_2)$ , trans $(NH_2)$ - | 380  | 6000         | 71        |
| $[Co(dien)(OH)_2(NO_2)], mer-$                                | 398  | 669          | 108       |
| $[Co(NH_3)_4(NCS)_2]^+$                                       | 420  |              | 101       |
| $[Co(en)_2C_2O_4]^+$                                          | 460  | 2000         | 51        |
| $[Co(en)(gly)_2]^+$ , Cl-cis(O)-                              | 520  |              | 72        |
| $[Co(NH_3)_5(N_3)]^{2+}$                                      | 530  | 200          | 51        |
| $[Co(en)(NH_3)_3(OH_2)]^{3+}$ , fac-                          | 550  | 8750         | 51        |
| $[Co(en)(NH_3)_3(OH_2)]^{3+}$ , mer-                          | 550  | 14000        | 51        |
| $[Co(en)(NH_3)_3(OH_2)]^{2+}$ , fac-                          | 560  | 315          | 51        |
| $[Co(dien)(OH)_2(NO_2)], fac-$                                | 595  |              | 108       |
| $[Co(en)(NH_3)_3(OH_2)]^{2+}$ , mer-                          | 635  | 750          | 51        |
| $[Co(NH_3)_5Br]^{2+}$                                         | 670  | 1000         | 51        |
| $[Co(en)(NH_3)_2(N_3)_2]^+$                                   | 670  | 600          | 51        |
| $[Co(NH_3)_5Cl]^{2+}$                                         | 700  | 1000         | 51        |
| $[Co(en)_2CO_3]^+$                                            | 730  | 1900         | 51        |
| $[Co(en)_2Br_2]^+$ , trans-                                   | 810  | 5500         | 51        |
| $[Co(en)_2Br_2]^+$ , cis-                                     | 810  | 3000         | 51        |
| $[Co(\beta-aibu)_2(NO_2)_2]^-$ , trans, trans, trans-         | 810  | 10000        | 71        |
| $[Co(en)_2Cl_2]^+$ , cis-                                     | 820  | 4500         | 51        |
| $[Co(tn)(gly)_2]^+$ , Cl-cis(O)-                              | 820  | 3500         | 73        |
| $[Co(en)_2Cl_2]^+$ , trans-                                   | 820  | 8000         | 51        |
| $[Co(NH_3)(\beta-ala)_2(NO_2)], cis(O), trans(NH_2)-$         | 830  | 9000         | 71        |
| $[Co(en)(gly)_2]^+$ , trans(O)-                               | 860  |              | 72        |
| $[Co(\beta-ala)_2(NO_2)_2]^{-}$ , trans, trans, trans-        | 896  | 9000         | 71        |
| $[Co(NH_3)_4(OH)(acetamide)]^{2+}$                            | 901  |              | 101       |
| $[Co(NH_3)_5(OH_2)]^{3+1}$                                    | 930  |              | 51        |
| $[Co(en)_2(OH_2)_2]^{3+}$ , trans-                            | 950  |              | 51        |
| $[Co(tn)(gly)_2]^+$ , trans(O)-                               | 960  | 12000        | 73        |
| $[Co(NH_3)_4(OH)(urea)]^{2+}$                                 | 988  |              | 101       |
| $[Co(NH_3)_5(OH)]^{2+}$                                       | 990  | 230          | 51        |
| $[Co(en)_2(OH_2)_2]^{3+}$ , cis-                              | 1000 | 11370        | 51        |
| $[Co(en)_2(OH_2)_2]^{5+}$ , cis-                              | 1015 | •••          | 101       |
| $[Co(NH_3)_4(N_3)_2]^+$ , trans-                              | 1070 | 300          | 51        |
| $[Co(NH_3)_2(OH_2)(SO_3)_2]$                                  | 1095 |              | 101       |
| $[Co(NH_3)_4(OH_2)_2(InioA)]^2$                               | 1098 | <b>01</b> 0  | 101       |
| $[Co(NH_3)_4(N_3)_2]^+, cis-$                                 | 1110 | 210          | 51        |
| $[C_0(NH_3)_2(OH_2)_2(TnioU)]^{-1}$                           | 1115 |              | 101       |
| $[Co(NH_3)_4(OH_2)(NCS)]^2$                                   | 1120 | <b>A</b> (A) | 101       |
| $[Co(en)_2(OH)_2]^*$ , trans-                                 | 1130 | 260          | 51        |
| $[Co(en)_2(OH)_2]^2$ , cis-                                   | 1150 | 400          | 51        |
| $[Co(en)(NH_3)_2Cl_2]^*$ , trans-                             | 1150 | 4000         | 51        |
| $[Co(en)(NH_3)_2BT_2]^*$ , irans-                             | 1100 | 4800         | 51        |
| [Co(dion)(OH) (SCN)]                                          | 1170 | 3000         | 51<br>109 |
| $[Co(ucil)(Ufl)_2(3CN)], iller-$                              | 11/8 | 1000         | 51        |
| $\begin{bmatrix} Co(en) (OH) \end{bmatrix}^{+} aic$           | 1180 | 1900         | 21<br>101 |
| [Co(dian)/OH), $(NCO)$ ] for                                  | 1100 | 100          | 101       |
| $[Co(dien)/(OH) (urea N)]^{+} = 0$                            | 1198 | 172          | 100       |
| $[Co(u)(n)(O)]_2(u)(a-1)]$ , mer-                             | 1200 | 7.00         | 100       |

| Complex                                                                               | σ(4) | Width (Hz) | Lit. No. |
|---------------------------------------------------------------------------------------|------|------------|----------|
| $[Co(en)_2(OH)_2]^+$ , trans-                                                         | 1213 |            | 101      |
| [Co(dien)(OH)2(NCO)], mer-                                                            | 1225 | 297        | 108      |
| [Co(dien)(OH) <sub>2</sub> NH <sub>3</sub> ] <sup>+</sup> , mer-                      | 1285 | 239        | 108      |
| [Co(dien)(OH),en] <sup>+</sup>                                                        | 1330 | 1916       | 108      |
| [Co(dien)(OH)2(urea-N)]*, fac-                                                        | 1335 | 575        | 108      |
| [Co(gly)]. fac-                                                                       | 1410 | 2500       | 73       |
| $[Co(gly)_3], fac-$                                                                   | 1410 |            | 72       |
| [Co(L-ala)], mer-                                                                     | 1460 | 6500       | 71       |
| $[Co(NH_3)_4CO_3]^+$                                                                  | 1580 | 1100       | 51       |
| [Co(en)(NH <sub>1</sub> ) <sub>2</sub> (OH) <sub>2</sub> ] <sup>+</sup> , trans-      | 1580 | 400        | 51       |
| [Co(L-nva)], mer-                                                                     | 1600 | 7000       | 71       |
| [Co(dien)(OH,),Cl] <sup>2+</sup> , mer-                                               | 1612 | 536        | 108      |
| [Co(dien)(OH,),Cl] <sup>2+</sup> , fac-                                               | 1651 | 395        | 108      |
| $[Co(NH_3)_4Cl_3]^+$ , trans-                                                         | 1660 | 4000       | 51       |
| $[Co(NH_3)_4Cl_3]^+$ , cis-                                                           | 1660 | 2000       | 51       |
| [Co(en)(NH <sub>1</sub> ) <sub>1</sub> (OH) <sub>2</sub> ] <sup>+</sup> , cis, trans- | 1660 | 1030       | 51       |
| $[Co(en)(NH_1), (OH)_1]^+$ , cis,cis-                                                 | 1670 | 400        | 51       |
| [Co(dien)(urea-O),] <sup>3+</sup> , mer-                                              | 1712 | 730        | 108      |
| Co(gly), mer-                                                                         | 1730 | 6000       | 71       |
| Co(gly), mer-                                                                         | 1740 | 6500       | 73       |
| Co(gly)], mer-                                                                        | 1740 |            | 72       |
| $Co(NH_{3})_{1}(N_{3})_{2}$ , mer-                                                    | 1750 | 710        | 51       |
| Co(dien)(OH <sub>2</sub> ),1 <sup>3+</sup> , mer-                                     | 1782 | 383        | 108      |
| $Co(NH_{3}), (OH_{3}),  ^{3+}, cis-$                                                  | 1880 |            | 101      |
| $Co(NH_3)_3(OHF_3)_3]^{3+}$ , cis-                                                    | 1810 | 5250       | 51       |
| $C_0(NH_4)_1(N_4)_1$ , fac-                                                           | 1820 | 170        | 51       |
| $C_0(NH_{*}), (C_{*}O_{*}))^+$                                                        | 1850 |            | 51       |
| $Co(dien)(urea-O)_1^{3+}, fac-$                                                       | 1882 | 580        | 108      |
| $Co(NH_{1}) (OH_{1})^{+}$ , cis-                                                      | 1940 | 245        | 51       |
| $C_0(NH_1)_1(OH)_1^+, cis-$                                                           | 1987 |            | 101      |
| Co(NH,)(OH,),(SO,),] <sup>-</sup>                                                     | 2200 |            | 101      |
| $Co(NH_{3})(OH_{3})_{3}(ThioA)^{3+}$                                                  | 2210 |            | 101      |
| $Co(en)(C_2O_4)_1$                                                                    | 2250 | 3200       | 51       |
| $C_0(NH_3)(OH_3)_3(ThioU)_3^{3+}$                                                     | 2260 |            | 101      |
| Co(dien)(OH <sub>2</sub> )], mer-                                                     | 2265 |            | 108      |
| $Co(NH_1)(OH_1)_1(ThioS)]^{3+}$                                                       | 2272 |            | 101      |
| $Co(gly)_{1}(C_{2}O_{4})^{-}, Cl-cis(N)$ -                                            | 2420 | 3700       | 73       |
| $C_0(gly)_0(C_0O_A)^{-1}$ , $C_1-cis(N)$ -                                            | 2420 |            | 72       |
| $2o(gly)_{2}(C_{2}O_{4})^{-1}, C_{2}-cis(N)^{-1}$                                     | 2470 |            | 72       |
| $C_0(g y)_1(C_0O_1)^{-1}$ , C2-cis(N)-                                                | 2470 | 4000       | 73       |
| $Co(\beta-a a)$ , mer-                                                                | 2500 | 8000       | 71       |
| Co(ThioS),1 <sup>3+</sup>                                                             | 2578 |            | 101      |
| $20(NH_{3})_{3}(OH_{3})_{3}^{3+}$ , fac-                                              | 2630 | 350        | 51       |
| $Co(en)(NH_3)(OH)_3$ , fac-                                                           | 2710 | 350        | 51       |
| $20(NH_3)(C_3O_4)^{-1}$                                                               | 2780 | 1500       | 51       |
| $20(OH_{2})(SO_{2})^{2}$                                                              | 2898 |            | 101      |
| $Co(OH_{2})_{4}(ThioU)_{1}^{3+}$                                                      | 2908 |            | 101      |
| $[o(g v)(C_{2}O_{1})]^{-}$ , trans(N)-                                                | 2920 | 12500      | 73       |
| $C_0(g v)_1(C_0O_1)$ , trans(N)-                                                      | 2920 |            | 72       |
| $\operatorname{Co}(en)(\operatorname{CO}_{3})_{1}^{-}$                                | 2940 | 2400       | 51       |
| $C_{0}(OH_{1})_{1}(ThioU)_{1}^{3+}$                                                   | 2968 |            | 101      |
| $\log(OH_2)_4(ThioS)_2]^{3+}$                                                         | 2975 |            | 101      |

TABLE 2e (continued)

| σ(4) | Width (Hz)                                                                                                    | Lit No                                                                                                                                                                                       |
|------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                               |                                                                                                                                                                                              |
| 3550 | 1600                                                                                                          | 51                                                                                                                                                                                           |
| 3680 | 4600                                                                                                          | 73                                                                                                                                                                                           |
| 3680 |                                                                                                               | 72                                                                                                                                                                                           |
| 4700 | 250                                                                                                           | 51                                                                                                                                                                                           |
| 4800 |                                                                                                               | 72                                                                                                                                                                                           |
| 4800 | 200                                                                                                           | 73                                                                                                                                                                                           |
| 5770 | 250                                                                                                           | 51                                                                                                                                                                                           |
|      | σ(4)           3550           3680           3680           4700           4800           4800           5770 | σ(4)         Width (Hz)           3550         1600           3680         4600           3680         4600           4700         250           4800         200           5770         250 |

 TABLE 2f.

 Cobalt-59 chemical shift from tris(acetylacetonato)cobalt(III)/Chloroform (ppm).

| Complex                                                        | σ(5)        | Width (Hz) | Lit. No. |
|----------------------------------------------------------------|-------------|------------|----------|
| [Co(acac) <sub>3</sub> Nd(dpm) <sub>3</sub> ]                  | -417        | 400        | 79,92    |
| [Co(acac) <sub>3</sub> Pr(dpm) <sub>3</sub> ]                  | -416        | 450        | 79,92    |
| [Co(acac) <sub>3</sub> Nd(fod) <sub>3</sub> ]                  | - 396       | 76         | 79,92    |
| [Co(acac) <sub>3</sub> Pr(fod) <sub>3</sub> ]                  | - 394       | 126        | 79,92    |
| [Co(acac) <sub>3</sub> Sm(dpm) <sub>3</sub> ]                  | -378        | 875        | 79,92    |
| $[Co(acac)_3Sm(fod)_3]$                                        | -344        | 50         | 79,92    |
| [Co(acac) <sub>3</sub> La(dpm) <sub>3</sub> ]                  | -332        | 680        | 79,92    |
| $[Co(acac)_{3}La(fod)_{3}]$                                    | -281        | 202        | 79,92    |
| [Co(acac) <sub>3</sub> Eu(fod) <sub>3</sub> ]                  | -257        | 50         | 79,92    |
| [Co(acac), Eu(fod),]                                           | -252        | 600        | 79,92    |
| $\Delta$ -c-[Co((-)-hmcar) <sub>3</sub> ]                      | -128        | 314        | 42       |
| $\Lambda$ -c-[Co((+)-hmcar) <sub>3</sub> ]                     | -128        | 314        | 42       |
| $\Lambda$ -c-[Co((-)-hmcar) <sub>3</sub> ]                     | - 99        | 620        | 42       |
| $\Delta$ -c-[Co((+)-hmcar) <sub>3</sub> ]                      | <b>— 99</b> | 620        | 42       |
| $\Delta$ - <i>t</i> -[Co((+)-hmcar) <sub>3</sub> ]             | -90         | 730        | 42       |
| $\Lambda$ -t-[Co((-)-hmcar) <sub>3</sub> ]                     | -90         | 730        | 42       |
| $\Delta$ -t-[Co((-)-hmcar) <sub>3</sub> ]                      | -68         | 710        | 42       |
| $\Lambda$ -t-[Co((+)-hmcar) <sub>3</sub> ]                     | -68         | 710        | 42       |
| [Co(ppd) <sub>3</sub> ], cis-                                  | - 59        | 130        | 42       |
| [Co(ppd) <sub>3</sub> ], trans-                                | - 59        | 320        | 42       |
| [Co(acac) <sub>3</sub> ]                                       | 0           | 120        | 42       |
| [Co(bzac) <sub>3</sub> ], trans-                               | 12          | 270        | 42       |
| [Co(bzac) <sub>3</sub> ], cis-                                 | 50          | 250        | 42       |
| [Co(tfac) <sub>3</sub> ], cis-                                 | 76          | 160        | 42       |
| [Co(tfac) <sub>3</sub> ], trans-                               | 80          | 190        | 42       |
| $\Lambda - t - [Co((+) - atc)_3]$                              | 284         | 270        | 42       |
| $\Delta$ -t-[Co((+)-atc) <sub>3</sub> ]                        | 289         | 310        | 42       |
| [Co(TTA) <sub>3</sub> ]                                        | 295         | 250        | 42       |
| $\Lambda - c - [Co((+) - atc)_3]$                              | 304         | 290        | 42       |
| $\Delta - c - [\operatorname{Co}((+) - \operatorname{atc})_3]$ | 356         | 220        | 42       |

Almost all cobalt complexes are mononuclear, but several binuclear or oligonuclear complexes such as carbonyls and dithiocarbamates are also studied thoroughly, but the assignments of these signals for the site of these moieties have not been sufficiently described. For such a case, each component of the multiplet spectra are denoted by Roman numbers from the smaller chemical shift side.

(\*) These signals seem to be assigned to acontaminants occasionally co-existing in these complexes (for

## COBALT-59 NMR

stance,  $[Co(en)_3]^{3+}$ ). These acontaminants usually show much sharper signals which are more readily preved than the main components.

(\*\*) The species existing in aqueous sodium hexanitrocobaltate(III) solution is not hexakis(nitrito-N)sbaltate(III). see Ref. 127.

(\*\*\*) The stereochemical notation of dien and tetraen complexes in the Reference 93, 94, and 95 are not insistent with each other, and seems to contain some proof-reading errors. The original descriptions are splied in this table.

| TABLE 3                                                                                                       |
|---------------------------------------------------------------------------------------------------------------|
| Chemical shift $\sigma(1)$ , and line width data for cobalt-59 of lower oxidation states and organometallics. |

| omplex                                                                                                                 | σ(1)   | Width (Hz) | Lit. No. |
|------------------------------------------------------------------------------------------------------------------------|--------|------------|----------|
| Co(PF <sub>3</sub> ) <sub>4</sub> ] <sup>-</sup> /water                                                                | -4220  | narrow     | 18       |
| $o(PF_3)_4 H / C_7 H_{16}$                                                                                             | - 3910 | 3840       | 18       |
| $o(CO)_4H/C_5H_1$                                                                                                      | -3721  | 3240       | 18       |
| Co(CO) <sub>4</sub> ] <sup>-</sup> /water                                                                              | -3100  | narrow     | 18       |
| $o(CO)_4$ -Mn(CO),                                                                                                     | -2900  |            | 36       |
| (RuCO <sub>3</sub> (CO) <sub>12</sub> (minor peak)                                                                     | -2768  |            | 117      |
| $[RuCO_3(CO)_{10}(P(Ph)_3)_2/CD_2Cl_2$ [intensity 2]                                                                   | -2715  |            | 117      |
| IRuCO <sub>3</sub> (CO) <sub>11</sub> (P(Ph) <sub>3</sub> )/CD <sub>2</sub> Cl <sub>2</sub> (minor peak)               | -2712  |            | 117      |
| $(C_{5}H_{5})(CO)_{2}/C_{6}H_{6}$                                                                                      | -2675  | 6800       | 18       |
| $(C_{5}H_{5})(CO)_{2}/C_{7}H_{16}$                                                                                     | -2675  | 6780       | 18       |
| $IRuCo_3(CO)_{11}(N(Me)_3)/CD_2Cl_2$                                                                                   | - 2649 |            | [[7      |
| IRuCo <sub>3</sub> (CO) <sub>10</sub> (TMEDA) /CD <sub>2</sub> Cl <sub>2</sub>                                         | - 2649 |            | 117      |
| [RuCo <sub>3</sub> (CO) <sub>11</sub> (P(Ph) <sub>3</sub> )/CD <sub>2</sub> Cl <sub>2</sub> [intensity 2]              | -2648  |            | 117      |
| $IRuCo_3(CO)_1$ , $/CD_2Cl_2$                                                                                          | -2648  |            | 117      |
| IRuCO <sub>3</sub> (CO) <sub>11</sub> (P(Ph) <sub>3</sub> )/CD <sub>2</sub> Cl <sub>2</sub> (minor peak)               | -2641  |            | 117      |
| $IRuCO_3(CO)_{11}(N(Et)_3)/CD_2Cl_2$                                                                                   | -2630  |            | 117      |
| IRuCO <sub>3</sub> (CO) <sub>10</sub> (P(Ph) <sub>3</sub> ), /CD <sub>2</sub> Cl <sub>2</sub> [intensity 1]            | -2575  |            | 117      |
| IRuCO <sub>3</sub> (CO) <sub>11</sub> (P(Ph) <sub>3</sub> )/CD <sub>2</sub> Cl <sub>2</sub> [intensity 1]              | -2574  |            | 117      |
| IRuCO <sub>3</sub> (CO) <sub>10</sub> (P(Ph) <sub>3</sub> ) <sub>2</sub> /CD <sub>2</sub> Cl <sub>2</sub> (minor peak) | -2530  |            | 117      |
| $IgCo_2(CO)_8/C_6H_6$                                                                                                  | -2520  | 22860      | 18       |
| $IRuCo_3(CO)_{12}/CD_2Cl_2$ (minor peak)                                                                               | -2514  |            | 117      |
| $IRuCo_3(CO)_{12} / CD_2Cl_2$ (minor peak)                                                                             | -2464  |            | 117      |
| $Co(C_5H_5)_2]^+$ (C1-, 10% in MeOH)                                                                                   | 2410   | 21600      | 18       |
| $Co(C_5H_5)_2$ /water                                                                                                  | -2410  | 14600      | 18       |
| $Co(C_5H_5)_2]^+$ (C1-, 4% in MeOH)                                                                                    | -2410  | 13600      | 18       |
| $Co(C_{5}H_{5})_{2}]^{+}$                                                                                              | -2200  |            | 26       |
| $Co_2(CO)_8 / C_5 H_{12}$                                                                                              | -2101  | 6350       | 18       |
| $Co_2(CO)_8 / C_6 H_6$                                                                                                 | -2101  | 10410      | 18       |
| $Co_4(CO)_{12}$ /CDCl <sub>3</sub> [I] (basal)                                                                         | -2065  | 12000      | 109      |
| $Co_4(CO)_{12} / C_5 H_{12}$ [1] (basal)                                                                               | -1961  |            | 18       |
| $\log(C_{5}H_{5})(C_{6}H_{8})$ /toluene-d <sub>8</sub>                                                                 | -1820  | 13000      | 110      |
| $C_{5}H_{5}(C_{6}H_{4}(CF_{3})_{4}) / toluene-d_{8}$                                                                   | -1726  | 14400      | 110      |
| $C_{0}(C_{5}H_{5})(C_{5}H_{5}-CF_{3})/C_{6}D_{6}$                                                                      | -1640  | 16800      | 110      |
| $C_6(C_5H_5(C_5H_5-Me)/C_6D_6)$                                                                                        | -1627  | 16800      | 110      |
| $C_{0}(C_{5}H_{5})(C_{4}H_{6})/C_{6}D_{6}$                                                                             | -1625  | 8100       | 110      |
| $Co(C_5H_5)(C_4H_6)$ /THF-d <sub>8</sub>                                                                               | -1620  | 8650       | 110      |
| $C_{0}(C_{5}H_{5})(C_{4}H_{5}-C_{2}H_{4}CN)/C_{6}D_{6}$                                                                | -1601  | 14400      | 110      |
| $C_{0}(C_{5}H_{5})(C_{4}H_{5}-C_{3}H_{7})/C_{6}D_{6}$                                                                  | -1571  | 10200      | 110      |
| $C_{0}(C_{5}H_{5})(C_{4}H_{5}-C_{2}H_{4}C_{3}H_{5})/C_{6}D_{6}$                                                        | -1567  | 10400      | 110      |
| $C_0(C_5H_5)(C_5H_5-CH_2-C_3H_5)/C_6D_6$                                                                               | -1560  | 18750      | 110      |
| $\log(C_2H_4)_2(C_5Me)_5)$ /toluene-d <sub>8</sub>                                                                     | -1470  | 9900       | 110      |
| $Co(indenyl)(C_6H_8) / THF-d_8$                                                                                        | -1443  | 11600      | 110      |

TABLE 3 (continued)

| Complex                                                                            | σ(1)   | Width (Hz) | Lit. No. |
|------------------------------------------------------------------------------------|--------|------------|----------|
| $C_0(C_{\epsilon}H_{\epsilon})(C_{\epsilon}H_{\epsilon})/C_{\epsilon}D_{\epsilon}$ | - 1439 | 9600       | 110      |
| $Co(COD)(C_{s}(Me)_{s}) / toluene-d_{s}$                                           | - 1413 |            | 102      |
| Co(C,H,)(CHD) /toluene-d <sub>8</sub>                                              | 1400   | 10100      | 110      |
| $C_0(CO)_1 NO / C_7 H_{16}$                                                        | -1365  | 546        | 18       |
| $Co(C_{5}H_{5})(CHT)/THF-d_{8}$                                                    | -1319  | 10500      | 110      |
| Co(C <sub>5</sub> H <sub>5</sub> (benzo-CHT) /toluene-d <sub>8</sub>               | -1319  | 20000      | 110      |
| $Co(\pi-(2-Me)C_3H_4)/THF-d_8$                                                     | -1306  | 13000      | 110      |
| $Co(C_2H_4)_2(C_5H_4Me)$ /toluene-d <sub>8</sub>                                   | - 1294 | 7350       | 110      |
| $Co(COD)(C_5H_3(CH_2)_3)$ /toluene-d <sub>8</sub>                                  | 1284   | 8400       | 110      |
| $Co(C_5H_4-Si(Me)_3)(CHD) / toluene-d_8$                                           | -1282  | 13200      | 110      |
| $Co(indenyl)(C_6H_4(Me)_4) / tolucne-d_8$                                          | -1275  | 18000      | 110      |
| $Co(COD)(C_{5}H_{3}(CH_{2})_{3})/toluene-d_{8}$                                    | -1261  |            | 102      |
| Co(C <sub>5</sub> H <sub>5</sub> )(anthracene) /toluene-d <sub>8</sub>             | -1243  | 7600       | 110      |
| $Co(indenyl)(C_6H_4(CF_3)_4 / toluene-d_8)$                                        | -1236  | 13000      | 110      |
| $Co(C_5H_5)(C_2H_4)_2$ /THF-d <sub>8</sub>                                         | -1235  | 6800       | 110      |
| $Co(indenyl)(C_4H_6)/C_6D_6$                                                       | -1234  | 11200      | 110      |
| $Co(C_5H_5)(C_2H_4)_2$ /toluene-d <sub>8</sub>                                     | -1231  | 7000       | 110      |
| $Co(indenyl)(C_4H_4(CH_3)_2) / toluene-d_8$                                        | -1230  | 12600      | 110      |
| $Co(C_5H_5)((CH_2)_2C=CH_2)_2/C_6D_6$                                              | -1229  | 9300       | 110      |
| $Co(COD)(C_5H_4CH_3)$ /toluene-d <sub>8</sub>                                      | 1227   |            | 102      |
| $Co(C_5H_5)(COD)$ /toluene-d <sub>8</sub>                                          | -1190  | 9150       | 110      |
| $Co(C_2H_4)_2(C_5H_4Si(Me)_3)$ /toluene-d <sub>8</sub>                             | -1187  | 10200      | 110      |
| Co(indenyl)(isoprene) /toluene-d <sub>8</sub>                                      | -1180  | 11400      | 110      |
| $Co(C_5H_5)(COD) / THF-d_8$                                                        | -1178  | 9150       | 110      |
| $Co(COD)(C_{s}H_{s}) / toluene-d_{8}$                                              | -1176  |            | 102      |
| $Co(COD)(C_5H_4-Si(Me)_3)$ /toluene-d <sub>8</sub>                                 | -1170  | 11100      | 110      |
| $Co(COD)(C_5H_4C(Me)_3)$ /toluene-d <sub>8</sub>                                   | -1166  |            | 102      |
| $Co(COD)(C_{5}H_{4}-Si(Me)_{3}) / toluene-d_{8}$                                   | -1149  |            | 102      |
| $Co(C_5H_5)(1,5-C_6H_{10})/C_6D_6$                                                 | -1109  | 8550       | 110      |
| $Co(C_5H_5(1,6-C_7H_{12}) / toluene-d_8$                                           | -1102  | 9750       | 110      |
| $Co(C_5H_5)_2(CH_2CHCN)_2$ /toluene-d <sub>8</sub>                                 | -1089  | 12400      | 110      |
| $Co(COD)(C_5H_4-C_6H_5)$ /toluene-d <sub>8</sub>                                   | -1088  |            | 102      |
| $Co(COD)(C_5H_4COCH_3)$ /toluene-d <sub>8</sub>                                    | - 1055 |            | 102      |
| $Co(C_7H_9)(C_7H_6-SiMe_3)$ /toluene-d <sub>8</sub>                                | -1036  | 12500      | 110      |
| $Co(C_{5}H_{5})(C_{6}H_{4})(Ph)_{4})$ /toluene-d <sub>8</sub>                      | - 930  | 18800      | 110      |
| Co(indenyl)(CHT) /THF-d <sub>8</sub>                                               | - 899  | 12400      | 110      |
| $Co(indenyl)(C_2H_4)_2$ /THF-d <sub>8</sub>                                        | - 879  | 19200      | 110      |
| Co(COD)(Me <sub>3</sub> Si-indenyl) /toluene-d <sub>8</sub>                        | - 858  | 14000      | 110      |
| Co(indenyl)(COD) /toluene-d <sub>8</sub>                                           | - 851  | 7700       | 110      |
| Co(indenyl)(COD) /THF-d <sub>8</sub>                                               | - 849  | 9450       | 110      |
| $Co_4(CO)_{12} / C_5 H_{12}$ [II] (apical)                                         | - 814  |            | 18       |
| $Co(\pi - C_3H_5)_3$ /THF-d <sub>8</sub>                                           | - 796  | 3750       | 110      |
| $Co(\pi - C_3H_5)(C_5H_5)(Me) / C_6D_6$                                            | - 788  | 6600       | 110      |
| $Co(indenyl)(1,5-C_6H_{10}) / THF-d_8$                                             | - 756  | 9750       | 110      |
| $Co(indenyl)(1,5-C_6H_{10})/toluene-d_8$                                           | - 747  | 10500      | 110      |
| $\operatorname{Co}_4(\operatorname{CO})_{12}/\operatorname{CDCl}_3$                | - 715  | 4000       | 109      |
| $Co(\pi - C_3H_4)(C_5H_5)CH_2C_6H_5/C_6D_6$                                        | - 455  | 11000      | 110      |
| $Co(COD)(\pi - C_8H_{13}) / toluene-d_8$                                           | - 275  | 3700       | 110      |
| $Co(\pi - C_3H_4)(C_5H_5)Br/C_6D_6$                                                | 1050   | 10000      | 110      |

#### 6.3. Stereoisomer Discrimination

The ratio of chemical shift against CFSE is fairly large, and the improvement of NMR spectrometers makes it possible to determine the chemical shift differences in the magnitude of 1.0 ppm accurately for the sharp cobalt-59 NMR spectra. This improvement enables us to apply cobalt-59 NMR to various similar complexes such as diastereomers. The stereochemistry of tris-chelates of cobalt(III) complexes has been extensively studied mainly with the visible-ultraviolet spectroscopy (absorption and circular dichroism). The discrimination of the small differences in similar stereoisomers by electronic spectra is usually very difficult. The 1 ppm chemical shift difference of cobalt-59 corresponds to the difference in the first absorption maxima of 0.03 nm, which is almost impossible to detect as noted above.

Tris(propylenediamine)chelates and several other tris-diammine chelates are well characterized by cobalt-59 NMR.<sup>46,48</sup> Also several diastereotopic isomers of the tris(acetylcamphorato)- and tris(hydroxymethylenecarvonato)-cobalt(III) chelates can be easily discriminated.<sup>42</sup> Seven possible isomers for  $\mu$ -peroxo bis-((tetraen)-cobalt(III)) complex, [(Co(tetren)<sub>2</sub>O<sub>2</sub>]<sup>4+</sup> can also be characterized by cobalt-59 chemical shift data.<sup>93,94</sup>

## 7. SPIN-SPIN COUPLING

The scalar coupling constants including those of cobalt-59 have been scarcely reported relative to chemical shift data. The quadrupolar relaxation of cobalt-59 causes broadening of the line width and prevented us from determining the exact (splitting by spin-spin couplings.) Although several  ${}^{1}J(\text{Co-X})$  values were reported in highly-symmetric complexes, such as tetracarbonylcobaltate(-I)<sup>18</sup> or hexacyano-cobaltate(III),<sup>12,13</sup> from the cobalt-59 NMR spectra, the number of the reported coupling constants are relatively small.

The cobalt(III) complexes with small sterically hindered ligands such as trimethyl phosphite or cage phosphite esters show clear scalar coupling with narrow lines.<sup>61,78,125</sup>

The reported spin-spin coupling constants are summarized in Table 5. Several values were also obtained from the NMR spectra of the ligand nuclei, such as carbon-13 or nitrogen-15, occasionally by the use of enriched isotopomers.

Only one  ${}^{4}J({}^{59}Co-N-C-C-H)$  was reported for the Schiff-base complex, nitrosylbis(o-hydroxyacetophenoneoximato)cobalt(III).<sup>103</sup> Its magnitude (ca. 540 Hz) is surprisingly large, but there is no data to compare with this at present.

## 8. EFFECT OF PARAMAGNETISM

Almost all complexes containing tervalent cobalt are diamagnetic except the wellknown hexafluorocobaltate(III) and several rather peculiar ones such as heteropolymolybdates. These essentially paramagnetic complexes are impossible to measure using the cobalt-59 NMR spectra, although some spin cross-over complexes have been investigated by Navon and his groups.<sup>87,106</sup>

Spin cross-over complexes have been studied by cobalt-59 NMR spectroscopy. The temperature dependence of the chemical shift of hexaaquacobalt(III) cation<sup>87</sup> and the typical spin-crossover complex of trinuclear bis(cyclopentadienylcobalt-

tris(diethylphosphonato))cobalt(III)<sup>106</sup> are fairly large, and the contribution of paramagnetism can be easily analyzed.

| Ligand                                      | first (ppm)    | second (ppm)   | third (ppm)    |
|---------------------------------------------|----------------|----------------|----------------|
| NO,-                                        | $-530 \pm 20$  | $-420 \pm 100$ | _              |
| N <sub>3</sub> -                            | $480 \pm 50$   | $40 \pm 50$    | 660 ± 50       |
| CI-                                         | $650 \pm 50$   | $900 \pm 50$   |                |
| Br <sup>-</sup>                             | $620 \pm 50$   | $900 \pm 50$   |                |
| он-                                         | 950 ± 100      | 950 ± 100      | $1100 \pm 100$ |
| H <sub>2</sub> O                            | 900 ± 100      | 870 ± 100      | 830 ± 100      |
| Ligand                                      | second (ppm)   | fourth (ppm)   | sixth (ppm)    |
| C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> | $1200 \pm 100$ | $1500 \pm 100$ | 2000           |
| CO,2-                                       | $1500 \pm 100$ | $1900 \pm 100$ | 2200           |

TABLE 4a. Ligand Shift Parameter δ<sub>i</sub>(L).<sup>51</sup>

TABLE 4b. Chemical shift (S<sub>L</sub>) and line broadening ( $\gamma_L$ ) parameters for cobalt(III) complexes.<sup>93</sup>

| Ligand                                                                  | S <sub>L</sub> (10 <sup>-5</sup> ppm <sup>-1</sup> ) | $\gamma_{L}(Hz^{1/2})$ | ſ    |
|-------------------------------------------------------------------------|------------------------------------------------------|------------------------|------|
| CN-                                                                     | 4.446                                                | 79.500                 | 1.7  |
| N(CH,CH,NH,),                                                           | 3.087                                                | 65.958                 |      |
| NH(CH,CH,NH <sub>2</sub> ), (fac)                                       | 2.895                                                | 59.985                 | 1.29 |
| NH <sub>2</sub> CH-                                                     | 2.858                                                | 59.210                 | 1.30 |
| NH(CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> ) <sub>2</sub> (mer) | 2.823                                                | 58.488                 | 1.29 |
| NH,CH,CH,NH,                                                            | 2.755                                                | 57.080                 | 1.28 |
| NH <sub>3</sub>                                                         | 2.608                                                | 52.000                 | 1.25 |
| NCS-                                                                    | 2.476                                                | 45.000                 | 1.02 |
| <u>s</u> cn-                                                            | 2.320                                                | 38.000                 | 0.73 |
| $Q_2^{2-}$                                                              | 2.169                                                | 44.446                 |      |
| <u>1</u> -                                                              | 2.168                                                | 41.000                 |      |
| N <sub>3</sub> <sup>-</sup>                                             | 2.125                                                | 43.000                 | 0.83 |
| Br <sup>-</sup>                                                         | 2.125                                                | 35.938                 | 0.72 |
| <u>C</u> I-                                                             | 2.058                                                | 33.895                 | 0.78 |
| $CQ_{3}^{2-}$                                                           | 2.017                                                | 35.500                 |      |
| OH-                                                                     | 1.930                                                | 19.659                 |      |
| H₂Ō                                                                     | 1.920                                                | 19.613                 | 1.00 |

The cobalt-59 NMR spectra of the adducts of cobalt(III) complexes with paramagnetic species, such as so-called "lanthanide shift reagents" can be sufficiently recorded by ordinary measurements. Paramagnetic spin delocalization (contact shift) and dipolar effect (pseudocontact shift) were estimated by Hirayama and his coworkers,<sup>79,92</sup> on the 1:1 adducts of the tris(dipivaloylmethanato)- and tris(heptafluorodimethyloctanedionato)- chelates of lanthanides(III) with tris(acetylacetonato)-cobalt(III) in several organic solvents such as chloroform. The chemical shift change for the paramagnetic complexes seems not as large as expected. The

#### COBALT-59 NMR

iamagnetic adducts with lanthanum chelates show a relatively large shift, (so-called CFS, complex formation shift), but the paramagnetic contribution to the chemical hift seems much smaller in this case. These paramagnetic shifts were interpreted with oth the contact shift and pseudocontact shift terms. The line width shows wide hanges for these paramagnetic chelates. The reason is as yet unclear.

## '. ORGANOMETALLICS

Except for a small number of highly symmetric moieties such as tetracarbonylobaltate(-I) and nitrosyltricaronylcobalt,<sup>18</sup> almost all organocobalt species show elatively large line widths and it is very hard to measure exactly the cobalt-59 MR spectra.

Characterization of the cobalt carbonyl species in solution has been carried out y several groups.<sup>16,18,53,109</sup> The characterization of diamagnetic cobalt entities in hese organocobalt(III) complexes seems to be highly improved by the introduction of high-field NMR. Several phosphine- or phosphite derivatives and heteronuclear arbonyls have also been investigated.<sup>53,114,117</sup>

Alkylcobalt(III) complexes with dimethylglyoximato- or other Schiff-base ligands have been studied by various research groups<sup>45,49,85</sup> who are interested in the bioinorganic activities similar to the Vitamin  $B_{12}$ .

A German research group found the existence of excellent correlation between :obalt-59 chemical shift and catalytic activities in the alkylation reaction. Their 'ecent report<sup>102</sup> included the observation that chemical shifts of cyclooctadiene-:obalt(I) complexes clearly correlate with the catalytic activities for the formation of pyridine derivatives from alkynes and nitriles. Chemical shift and line width data for organocobalt complexes and some complexes of the lower oxidation states are shown n Table 3.

## **10. MEDIUM EFFECTS, CHARACTERIZATION OF SOLVENTS**

It is possible to determine accurately the slight changes in the electronic states of the cobalt nucleus by cobalt-59 NMR as noted before. This high sensitivity has been successfully applied to several interesting physicochemicals in solution.

Preferential solvation has been studied in several binary solvent mixtures. From the chemical shift change of tris(acetylacetonato)cobalt(III),<sup>7,28,123</sup> much precise information can be deduced that could not be found from the use of other spectroscopic methods such as proton or carbon-13 magnetic resonance and visible-ultraviolet spectroscopy.

The isotopic composition of the solvent is also expected to affect the chemical shifts of cobalt complexes in solution. The change in surroundings (secondary coordination sphere) can be detected effectively, and applied to the determination of the isotopic composition of many protic solvents. The successive substitution of amine protons by solvent deuterons for tris(ethylenediamine)cobalt(III) complex cation was traced firstly by Sudmeier<sup>38</sup> and more extensively by Doddrell<sup>68</sup> and Harris.<sup>104</sup> The usage of the cobalt-59 spectral change of hexaamminecobalt(III) cations was proposed as the indicator of the isotopic composition of water-heavy water mixture.<sup>99,100,107</sup> The hexacyanocobaltate(III) complex was also applied to study the change of surroundings<sup>81,84,90</sup> including isotopic composition.

|                                                    |                                          |       | Observed         |     |
|----------------------------------------------------|------------------------------------------|-------|------------------|-----|
| Complex                                            | Coupling                                 | J(Hz) | Nuclei           | Ref |
| $[Co(CN)_{6}]^{3}$                                 | <sup>1</sup> J(Co- <sup>13</sup> C)      | 126   | <sup>59</sup> Co | 12  |
| [Co(CN),]3-                                        | $^{1}J(Co^{-13}C)$                       | 126   | 59Co             | 13  |
| [Co(CN) <sub>6</sub> ] <sup>3-</sup>               | $^{1}J(Co^{-13}C)$                       | 125   | <sup>13</sup> C  | 129 |
|                                                    | $^{1}J(Co^{-13}C)$                       | 287   | 59Co             | 18  |
| [Co(NH <sub>1</sub> ) <sub>2</sub> ] <sup>3+</sup> | $^{1}J(Co^{-14}N)$                       | 40.8  | 5°Co             | 76  |
| [Co(NO <sub>3</sub> ),] <sup>3-</sup>              | $^{1}J(Co^{-14}N)$                       | 46    | 59Co             | 76  |
| [Co(en),] <sup>3+</sup>                            | $^{1}J(Co^{-14}N)$                       | 50    | 5°Co             | 77  |
| [Co(15NH_)]3+                                      | <sup>1</sup> J(Co- <sup>15</sup> N)      | 63    | 59Co             | 68  |
| $[Co(^{15}NO)(ketox)_{3}]$                         | <sup>1</sup> J(Co- <sup>15</sup> N)      | 9     | <sup>15</sup> N  | 121 |
| $[Co(^{15}NO_{3})_{\epsilon}OH_{3}]^{2-}$          | <sup>1</sup> J(Co- <sup>15</sup> N)      | 70    | 59Co             | 127 |
| $[C_0(NH_2)_{c}({}^{15}NH_2)]^{3+}$                | <sup>1</sup> J(Co- <sup>15</sup> N)      | 62.5  | <sup>15</sup> N  | 130 |
| $[Co(en-{}^{15}N, {}^{15}N), ]^{3+}$               | <sup>1</sup> J(Co- <sup>15</sup> N)      | 63.8  | <sup>15</sup> N  | 130 |
| $[C_0(P((OCH_3),CCH_3),1^{3+})]$                   | $^{1}J(Co^{-31}P)$                       | 412   | 59Co             | 78  |
| $[C_0(P(OCH_3)_3)^{3+}]$                           | $^{1}J(Co^{-31}P)$                       | 414   | <sup>59</sup> Co | 61  |
| $[C_0(P(OCH_1)_1)]^{3+}$                           | $^{1}J(Co^{-31}P)$                       | 443   | <sup>59</sup> Co | 78  |
| $[Co(PF_{2})]^{-}$                                 | $^{1}J(Co^{-31}P)$                       | 1222  | <sup>59</sup> Co | 18  |
| $[C_0(CN)_1]^3$                                    | $^{2}I(Co-C^{-15}N)$                     | 3.3   | 59Co             | 12  |
| $[Co(^{15}NH_{-}), ]^{3+}$                         | $^{2}J(Co-N-^{1}H)$                      | 5     | 59Co             | 68  |
| $[C_0(PF_*),1^-$                                   | $^{2}I(Co-P-^{19}F)$                     | 56    | 5°Co             | 18  |
| $[Co(^{15}NO)(ketox)_2]$                           | <sup>4</sup> J(Co-N-C-C- <sup>1</sup> H) | 540   | 5°Co             | 121 |

TABLE 5 Spin-spin coupling constants including cobalt-59.

The high sensitivity of the cobalt-59 chemical shift has been applied to the determination of the effect of the interaction of surrounding solvent molecules. Even the different isotopic compositions of the solvent water shows the remarkable characteristic differences of the spectral feature of cobalt complexes.<sup>81,104</sup> It is very surprising that the change of isotopic composition (proton-deuteron) can be detected using cobalt-59 NMR in spite of the lack of direct chemical bonding.

Mayer and his co-workers found that there is good correlation between the cobalt-59 chemical shift of tris(ethylenediamine)cobalt(III) trifluoromethanesulfonate and "acceptor numbers" of various solvents.<sup>70,74,98</sup> Acceptor numbers are originally defined from the chemical shift change of phosphorus-31 in trimethylphosphine oxide in various solvents. Therefore, the parallelism of the cobalt-59 and phosphorus-31 chemical shifts might have been expected, but the wide range of cobalt-59 NMR chemical shifts seems to give us much information on the various solvents. Only the limited solubility of cobalt complexes seems to be the severe weakpoint.

Line widths show clear dependence on the "donor numbers" of solvents. From the zero-field extrapolation, the limited line widths of several cobalt(III)complexes show positive correlation with these donor numbers.<sup>94</sup>

Association of cobalt(III) complexes with biological macromolecules can be studied by cobalt-59 NMR.<sup>83,120</sup> The line broadening gives us information on the secondary coordination sphere, and the affinity of these complexes to the active centre of enzymes. It seems fruitful to apply cobalt-59 NMR in this physicobiochemical area.

## 11. SEVERAL RECENT TOPICS

## 11.1. Hexanitrocobaltate(III)

The well-known pigment "Aureolin", and characteristic potassium precipitant, sodium hexanitrocobaltate(III) is seemingly the complex of longest history among the numerous cobalt(II) complexes. However, there are some unclarified problems with this complex mainly in aqueous solution and the magnitude of CFSE. Detailed crystal structure analysis and vibrational spectroscopic data confirmed the "hexanitro" or "hexanitrito-N" type coordination, but the different characteristics between the absorption spectra in aqueous solution and photoacoustic or reflectance spectra of the solid state suggests that some different species may exist when in aqueous solution.

From the first cobalt-59 NMR report by Proctor and Yu,<sup>5</sup> it has been suggested that there are different species which show larger chemical shifts from the main signals. These species were further studied by Gasser and Richards<sup>9</sup> and the existence of nitro-nitrito linkage isomers has been suggested. Rose and Bryant studied this complex by cobalt-59 and nitrogen-14 NMR relaxation, and estimated the coupling constant  ${}^{1}J({}^{59}Co-{}^{14}N)^{75-77}$  from both spectra.

Watabe<sup>127</sup> synthesized nitrogen-15 labelled sodium hexanitrocobaltate(III) and recorded the cobalt-59 NMR spectra in aqueous solution buffered with TRIS (pH = 8.3), and found the finely resolved multiplet spectra of cobalt-59 from the spin-spin coupling with ligand nitrogen-15 (I = 1/2).

This multiplet was a symmetric sextet, and much different from the septet expected from the coordination of six nitrogen atoms. This means that the cobalt(III) species in the aqueous hexanitrocobaltate(III) solution contains only five nitrogen ligand atoms. He concluded that the existing species in this solution should be [Co- $(NO_2)_5(OH)$ ]<sup>3-</sup> or [Co(NO<sub>2</sub>)<sub>5</sub>(OH<sub>2</sub>)]<sup>2-</sup> (pH dependent) with the aid of the electrophoretic characteristics. His conclusion suggests that the absorption maximum at around 380 nm should be the lower-energy part of the doublet of C<sub>4v</sub> type complexes, which has been assumed to the d-d transition of octahedrally symmetric cobalt(III) complexes. It is also expected that there must be a much larger contribution by the lowest excited state to the chemical shift of cobalt-59 than the second excited state.

Recent solid-state cobalt-59 NMR<sup>122</sup> data might support this conclusion, because the trend of the chemical shift change of hexanitrocobaltate(III) between solution and solid state is opposite to that of the well-established hexaamminecobalt(III) or tris(acetylacetonato(cobalt(II)) complexes.

### 11.2. NMR Thermometer

The large temperature dependence of the cobalt-59 chemical shift had been already pointed out in the earliest paper by Proctor and Yu.<sup>5</sup> Recent improvement of NMR spectrometers made it possible to determine exactly the change of chemical shift in the order of 0.1 ppm for sharp spectral lines. There are several proposals, of which the most reasonable one is tris(acetylacetonato)cobalt(III) in toluene or potassium hexacyanocobaltate(III) in aqueous solution.

#### 11.3. Solid-State NMR

Recent developments in CP/MAS technique have been well applied to the many

samples of half-spin nuclides, such as carbon-13 and silicon-29. The sharp spectra of many quadrupolar nuclides including cobalt-59 seem difficult to observe because of the large anisotropy of chemical shift tensors. Only several well-grown single crystals were chosen for the determination of chemical shift anisotropy.

Several highly-symmetric cobalt complexes were recorded by magic-angle spinning NMR spectroscopy.<sup>122,126</sup> The large chemical shift anisotropies of these complexes showed remarkable field dependence of spectral features as expected. The average chemical shifts are, however, not so different from the liquid samples. It means that the electronic surroundings of the central cobalt-59 nucleus do not change remarkably as a whole.

## 11.4. Database Construction

As in proton and carbon-13 NMR, the NMR spectroscopic data of cobalt-59 can be utilized as a powerful tool for characterization of various diamagnetic species in solutions such as mother liquors used in synthesis. Intensely coloured specimens usually prevent almost all spectroscopic measurements such as Raman, infrared, or visible-ultraviolet spectroscopy. The "in situ" characterization of the reacting species can be successfully examined by cobalt-59 NMR if accumulation and specification of spectroscopic data have been carried out.

Some trials were reported by Yamasaki<sup>89</sup> by the use of a large-scale computer equipped with a "personal database system" which was based on the compilation of literature data.<sup>64</sup> However, the improvement of the personal computer has made it possible to construct a "personal-size" database easily. The construction of a cobalt-59 NMR database with dBASE-III software was also reported.<sup>128</sup>

#### 12. CONCLUSION

Many useful applications of cobalt-59 NMR are to be expected in the inorganic and organometallic chemistry, as noted by Laszlo<sup>3</sup> in his review. The accumulation of spectroscopic data in a computer-readable form would be necessary for further applications in such a broad research area.

#### ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to Professor Toschitake Iwamoto, The University of Tokyo, who kindly gave him the chance to summarize cobalt-59 NMR research projects of the past decades.

List of Abbreviations for ligands, solvents and substituents

| Am  | amyl (pentyl)          |
|-----|------------------------|
| Bu  | butyl                  |
| Bz  | benzyl                 |
| CHD | 1,3-cyclohexadiene     |
| СНТ | 1,3,5-cycloheptatriene |
| COD | cyclooctadiene         |
| DMF | dimethylformamide      |
|     | -                      |

| DMSO    | dimethylsulfoxide                                      |
|---------|--------------------------------------------------------|
| Et      | ethyl                                                  |
| HIm     | imidazole                                              |
| Hex     | hexyl                                                  |
| Me      | methyl                                                 |
| MeIm    | methylimidazole                                        |
| OEP     | octaethylporphinato(2-)                                |
| Oct     | octyl                                                  |
| Ph      | phenyl                                                 |
| Pr      | propyl                                                 |
| Py      | pyridyl                                                |
| TMEDA   | tetramethylethylenediamine                             |
| TPP     | tetraphenylporphinato(2-)                              |
| TTA     | thenoyltrifluoroacetonato(-)                           |
| ThioA   | thioacetamide                                          |
| ThioS   | thiosemicarbazide                                      |
| ThioU   | thiourea                                               |
| abu     | aminobutyrato(-)                                       |
| acac    | acetylacetonato(-)                                     |
| acac-Br | 3-bromo-acetylacetonato(-)                             |
| acac-NO | 3-nitro-acetylacetonato(-)                             |
| acacen  | bis(acetylacetone)ethylenediiminato(2-)                |
| acacon  | bis(acetylacetone)propylenediiminato(2-)               |
| aibu    | aminoisobutyrato(-)                                    |
| ala     | alaninato(-)                                           |
| amben   | bis( <i>a</i> -aminobenzaldehyde)ethylenediiminato(2-) |
| atc     | acetylcamphorato(-)                                    |
| bdn     | 1.3-butanediamine                                      |
| benacen | bis(benzovlacetone)ethylenediiminato(2-)               |
| bimp    | 1.3-bis(biacetylmonooximimino)(-)                      |
| hiny    | 2.2'-hipyridine                                        |
| hn      | tetramethylenediamine (1 4-butanediamine)              |
| bzac    | benzovlacetonato(-)                                    |
| c-Hex   | cyclohexyl                                             |
| dbzm    | dibenzovlmethanato(-)                                  |
| dbzm-S  | monothio-benzovlmethanato(-)                           |
| diars   | <i>o</i> -nhenvlenebis(dimethylarsine)                 |
| dien    | diethylenetriamine                                     |
| dinhos  | <i>a</i> -nhenylenebis(dimethylphosphine)              |
| dmgH    | dimethylglyoximato(-)                                  |
| dpm     | dipivalovlmethanato(-)                                 |
| edta    | ethylenediaminetetraacetato(4-)                        |
| en      | ethylenediamine                                        |
| fod     | heptafluoro-dimethyl-octanedionato(-)                  |
| olv     | alveinato(-)                                           |
| hmear   | hydroxymethylenecaryonato(-)                           |
| ihn     | isobutylenediamine                                     |
| ilen    | isoleucinato(_)                                        |
| inaa    | isonitrosoacetylacetonato(-)                           |
| ketox   | a-hydroxyacetonhenone-oximato(_)                       |
| NULUA   | o nyaroxyacetopnenone-oximato(-)                       |

| 258       | A. YAMASAKI                                     |
|-----------|-------------------------------------------------|
| leu       | leucinato(-)                                    |
| mal       | malonato(2-)                                    |
| mbn       | meso-2,3-butanediamine                          |
| morph     | morpholino-                                     |
| mptn      | 2-methyl-2,4-pentanediamine                     |
| nleu      | norleucinato(-)                                 |
| nva       | norvalinato(-)                                  |
| phen      | 1,10-phenanthroline                             |
| pic       | picoline                                        |
| pip       | piperidino-                                     |
| pn        | propylenediamine                                |
| ppd       | phenylpropanedionato(-)                         |
| ptn       | 2,4-pentanediamine                              |
| pyrr      | pyrrolidino-                                    |
| sacaen    | bis(thioacetylacetone)ethylenediiminato(2-)     |
| salen     | bis(salicylidene)ethylenediiminato(2-)          |
| salox     | salicylaldoximato(-)                            |
| salphen   | bis(salicylidene)-o-phenylenediiminato(2-)      |
| tacn      | triazacyclononane                               |
| tame      | 1,1,1-tris(aminomethyl)methane                  |
| tetraen   | tetraethylenepentamine                          |
| tfac      | trifluoroacetylacetonato(-)                     |
| tn        | trimethylenediamine                             |
| tol       | toluidine                                       |
| triarsine | $(CH_3)_2As(CH_3)_3A_s(CH_3)_3As(CH_3)_2As(??)$ |
| trien     | triethylenetetramine                            |
| trop      | tropolonato(-)                                  |
| val       | valinato(-)                                     |

#### REFERENCES

- 1. R.G. Kidd and R.J. Goodfellow, "NMR in Periodic Tables" (ed. by R.K. Harris and B.E. Mann) pp. 195, Academic Press (1978).
- 2. F.W. Wehrli, Ann. Repts. NMR Spectroscopy, 9, 125 (1979).
- 3. P. Laszlo, "NMR of Newly Accessible Nuclei", Part II, pp. 253. (1983).
- 4. R.J. Goodfellow, "Multinuclear NMR" (ed. by J. Mason), Chapter 20, Plenum Press. (1987).
- W.G. Proctor and F.C. Yu, Phys. Rev., 81, 20 (1951). 5.
- J.S. Griffith and L.E. Orgel, Trans. Faraday Soc., 53, 601 (1957). 6.
- 7. R. Freeman, G.R. Murray and R.E. Richards, Proc. Roy. Soc. A, 242, 455 (1957).
- S.S. Dharmatti and C.R. Kanekar, J. Chem. Phys., 31, 1436 (1959). 8.
- 9. R.P.H. Gasser and R.E. Richards, Mol. Phys., 3, 163 (1960).
- G.R. Benedek, R. Englman and J.A. Armstrong, J. Chem. Phys., 39, 3349 (1963). 10.
- 11. H. Hartmann and H. Sillescu, Theoret. Chim. Acta, 2, 371 (1964).
- 12. P.C. Lauterbur, J. Chem. Phys., 42, 799 (1965).
- A. Loewenstein and M. Shporer, Mol. Phys., 9, 293-294 (1965). 13.
- 14. N.S. Biradar and M.A. Pujar, Current Sci. (Bangalore), 35, 385 (1966).
- 15. C.R. Kanekar and N.S. Biradar, Current Sci. (Bangalore), 35, 37 (1966).
- H. Haas and R.K. Sheline, J. Inorg. Nucl. Chem., 29, 693 (1967). 16.
- C.R. Kanekar, M.M. Dhingra, V.R. Marathe and R. Nagarajan, J. Chem. Phys., 46, 2009 (1967). 17.
- E.A.C. Lucken, K. Noack and D.F. Williams, J. Chem. Soc. A, 1967, 148. 18.
- N.J. Patel and B.C. Haldar, J. Inorg. Nucl. Chem., 29, 1037 (1967). 19.
- 20. R.E. Walstedt, J.H. Wernick and V. Jaccarino, Phys. Rev., 162, 301 (1967).
- 21. C. Floriani, M. Puppis and F. Calderazzo, J. Organometal. Chem., 12, 209 (1968).
- 22. A. Yamasaki, F. Yajima and S. Fujiwara, Inorg. Chim. Acta, 2, 39 (1968).

## VANDACAUT

- 23. G.P. Betteridge and R.M. Golding, J. Chem. Phys., 51, 2497 (1969).
- 24. S. Fujiwara, F. Yajima and A. Yamasaki, J. Magn. Reson., 1, 203 (1969).
- R.L. Martin and A.H. White, *Nature*, 223, 394 (1969).
   H.W. Spiess, H. Haas and H. Hartmann, J. Chem. Phys., 50, 3057 (1969).
- 27. N.S. Biradar and M.A. Pujar, Z. anorg. allg. Chem., 379, 88 (1970).
- 28. L.S. Frankel, C.H. Langford and T.R. Stengre, J. Phys. Chem., 74, 1376 (1970).
- 29. N.A. Matwiyoff and W.E. Wageman, Inorg. Chim. Acta, 4, 460 (1970).
- 30. H.W. Spiess and R.K. Sheline, J. Chem. Phys., 53, 3036 (1970).
- 31. A. Ader and L. Loewenstein, J. Magn. Reson., 5, 284 (1971).
- 32. N.S. Biradar and M.A. Pujar, Inorg. Nucl. Chem. Letters, 7, 269 (1971).
- E.S. Mooberry, M. Pupp, J. L. Slater and R. K. Sheline, J. Chem. Phys., 55, 3655 (1971). 33.
- 34. F. Yajima, A. Yamasaki and S. Fujiwara, Inorg. Chem., 10, 2350 (1971).
- 35. N.S. Biradar and M.A. Pujar, Z. anorg. allg. Chem., 391 (1972).
- 36. E.S. Mooberry and R.K. Sheline, J. Chem. Phys., 56, 1852 (1972).
- 37. D. Rehder and J. Schmidt, Z. Naturforsch. Teil B, 27, 625 (1972).
- 38. J.L. Sudmeier, G.L. Blackmer, C.H. Bradley and F.A.L. Anet, J. Am. Chem. Soc., 94, 757 (1972).
- F. Yajima, Y. Koike, T. Sakai and S. Fujiwara, Inorg. Chem., 11, 2054 (1972).
- K.L. Craighcad, J. Am. Chem. Soc., 95, 435 (1973).
   B.M. Fung, S.C. Wei, T.M. Martin and I. Wei, Inorg. Chem., 12, 1203 (1973).
- 42. A. Johnson and G.W. Everett, Jr., Inorg. Chem., 12, 2801 (1973).
- T.H. Martin and B.M. Fung, J. Phys. Chem., 77, 637 (1973).
- 44. J. Wilinski and R.J. Kurland, Inorg. Chem., 12, 2202 (1973).
- 45. B.E. Reichert and B.O. West, J. Chem. Soc. Chem. Comm., 1974, 177.
- 46. K.L. Craighead, J. Amer. Chem. Soc., 95, 2072 (1974).
- 47. M.R. Hyde and A.G. Sykes, J. Chem. Soc. Dalton Trans., 1974, 1583.
- 48. Y. Koike, F. Yajima, A. Yamasaki and S. Fujiwara, Chem. Lett., 1974, 177.
- 49. R.A. LaRossa and T.L. Brown, J. Am. Chem. Soc., 96, 2072 (1974).
- 50. L.F. Wuyts and G.P. Van der Kelen, J. Mol. Structure, 23, 73 (1974).
- 51. F. Yajima, Y. Koike, A. Yamasaki and S. Fujiwara, Bull. Chem. Soc. Japan, 47, 1442 (1974).
- 52. G.R. Benedek, R. Englman and J.A. Armstrong, J. Chem. Phys., 39, 1868 (1975).
- 53. M.A. Cohen, D.R. Kidd and T.L. Brown, J. Am. Chem. Soc., 97, 4408 (1975).
- 54. K.L. Craighead and R.G. Bryant, J. Phys. Chem., 79, 1602 (1975).
- K.L. Craighead, P. Jones and R.G. Bryant, J. Phys. Chem., 79, 1868 (1975). 55.
- 56. W. Hackbusch, H.H. Rupp and K. Weighardt, J. Chem. Soc. Dalton Trans., 1975, 1015.
- 57. W. Hackbusch, H.H. Rupp and K. Weighardt, J. Chem. Soc. Dalton Trans., 1975, 2364.
- 58. N. Juranic, M.B. Celap, D. Vucelic, M.J. Malinar and P.N. Radivojsa, Inorg. Chim. Acta, 25, 229 (1977).
- 59. T. Nishizawa, Ph.D. Thesis, Univ. Tokyo (1977).
- 60. H. Schumann, M. Meissner and H.J. Kroth, Z. Naturforsch. Teil B, 33, 1489 (1978).
- 61. A. Yamasaki, T. Aoyama, S. Fujiwara and K. Nakamura, Bull. Chem. Soc. Japan, 51, 643 (1978).
- 62. A. Yamasaki, M. Kojima, Y. Koike, H. Hirota and S. Fujiwara, Rept. Univ. Electro-Communs., 28, 299 (1978).
- 63. A. Yamasaki and K. Nakamura, Rept Univ. Electro-Commun., 28, 307 (1978).
- A. Yamasaki, Rept. Univ. Electro-Communs., 29, 69 (1978). 64.
- A.V. Ablov, E.V. Popa, M.D. Mazuk, V.N. Belovskii, A.P. Gulya and T.E Malinovskii, Koord. 65. Khim., 5, 287 (1979).
- 66. R. Bramley, A.E. Peppercorn and M.J. Whittaker, J. Magn. Reson., 35, 139 (1979).
- 67. M.R. Bendall and D.M. Doddrell, J. Magn. Reson., 33, 659 (1979).
- 68. D.M. Doddrell, M.R. Bendall, P.C. Healy, G. Smoith, C.H.L. Kennard, C.L. Raston and A.H. White, Austral. J. Chem., 32, 1219 (1979).
- 69. S.S. Dodwad and M.G. Datar, Indian J. Chem. Sect. A, 17, 100 (1979).
- 70. G. Gonzalez, U. Mayer and V. Gutmann, Inorg. Nucl. Chem. Lett., 15, 155 (1979).
- 71. N. Juranic, M.B. Celap, D. Vucelic, M.J. Malinar and P.N. Radivojsa, J. Coord. Chem., 9, 117 (1979).
- 72. N. Juranic, M.B. Celap, D. Vucelic, M.J. Malinar and P.N. Radivojsa, J. Magn. Reson., 35, 319 (1979).
- N. Juranic, M.B. Celap, D. Vucelic, M.J. Malinar and P.N. Radivojsa, Spectrochim. Acta, Part A, 73. 35, 997 (1979).
- 74. U. Mayer, Pure & Appl. Chem., 51, 1697 (1979).
- K. Rose and R.G. Bryant, J. Magn. Reson., 35, 223 (1979). 75.
- 76. K.D. Rose, Inorg. Chem., 18, 1332 (1979).

- 77. K.D. Rose and R.G. Bryant, Inorg. Chem., 18, 2130 (1979).
- 78. R. Weiss and J.G. Verkade, Inorg. Chem., 18, 529 (1979).
- 79. M. Hirayama and Y. Kawamata, Chem. Lett., 1980, 1295.
- 80. N. Juranic, Inorg. Chem., 19, 1093 (1980).
- 81. P. Laszlo and A. Stockis, J. Am. Chem. Soc., 102, 7818 (1980).
- 82. M.A. Pujar and N.S. Biradar, J. Indian Chem. Soc., 57, 782 (1980).
- 83. T. Raj, C. Bennett and R.G. Bryant, Anal. Biochem., 106, 373 (1980).
- 84. A. Delville, P. Laszlo and A. Stockis, J. Am. Chem. Soc., 103, 5991 (1981).
- 85. A.P. Gulya, M.P. Starysh and D.G. Batyr, Koord. Khim., 7, 108 (1981).
- 86. N. Juranic, J. Chem. Phys., 74, 3690 (1981).
- 87. G. Navon, J. Phys. Chem., 85, 3507 (1981).
- 88. V.P. Patankar, S.S. Dodwad and M.G. Datar, Current Sci. (Bangalore), 50, 719 (1981).
- 89. A. Yamasaki, Anal. Chim. Acta, 133, 741 (1981).
- 90. D.R. Eaton, C.V. Rogerson and A.C. Sandercock, J. Phys. Chem., 86, 1365 (1982).
- 91. C.J. Hawkins, R.H. Holm, J.A. Palmer and D.D. Traficante, Austral. J. Chem., 35, 1815 (1982).
- 92. M. Hirayama, Y. Kawamata, Y. Fujii and Y. Nakano, Bull. Chem. Soc. Japan, 55, 1798 (1982).
- 93. S.C.F. Au-Yeung and D.R. Eaton, Can. J. Chem., 61, 2431 (1983).
- 94. S.C.F. Au-Yeung and D.R. Eaton, Inorg. Chim. Acta, 76, L141 (1983).
- 95. S.C.F. Au-Yeung and D.R. Eaton, J. Magn. Reson., 52, 351 (1983).
- 96. S.C.F. Au-Yeung and D.R. Eaton, J. Magn. Reson., 52, 366 (1983).
- 97. N. Juranic, Inorg. Chem., 22, 521 (1983).
- 98. U. Mayer, Stud. Phys. Theoret. Chem., 27, 219 (1983).
- 99. S.H. Peterson, R.G. Bryant and J.G. Russell, Anal. Chim. Acta, 154, 211 (1983).
- 100. J.G. Russell and R.G. Bryant, Anal. Chim. Acta, 151, 227 (1983).
- 101. V.P. Tarasov, T.Sh. Kapanadze, G.V. Tsintsadze and Yu.A. Busalaev, Koord. Khim., 9, 647 (1983).
- H. Boennemann, W. Brijoux, R. Brinkmann, W. Meurers, R. Mynott, W. von-Philipsborn and T. Egolf, J. Organometal. Chem., 272, 231 (1984).
- 103. J. Bultitude, L..F. Larkworthy, J. Mason, D.C. Povey and B. Sandell, Inorg. Chem., 23, 3629 (1984).
- 104. R.K. Harris and R.J. Morrow, J. Chem. Soc., Faraday Trans. I., 80, 3071 (1984).
- 105. N. Juranic, Inorg. Chim. Acta, 87, L37 (1984).
- 106. G. Navon and W. Klaeui, Inorg. Chem., 23, 2722 (1984).
- 107. J.G. Russell, R.G. Bryant and M.M. Kreevoy, Inorg. Chem., 23, 4566 (1984).
- V.P. Tarasov, T.Sh. Kapanadze, I.B. Baranovskii, G.V. Tsintsadze, S.G. Drobyshev and Yu.A. Buslaev, Koord. Khim., 10, 368 (1984).
- 109. S. Aime, R. Gobetto, D. Osella, L. Milone, G.E. Hawkes and E.W. Randall, J. Magn. Reson., 65, 308 (1985).
- 110. R. Benn, K. Cibura, P. Hofmann, K. Jonas and A. Rufinska, Organometallics, 4, 2214 (1985).
- 111. A.M. Bond, R. Colton, J.E. Moir and D.R. Page, Inorg. Chem., 24, 1298 (1985).
- 112. A.M. Bond, R. Colton, Y. Ho, J.E. Moir, D.R. Page and R. Stott, Inorg. Chem., 24, 4402 (1985).
- 113. R. Bramley, M. Brorson, A.M. Sargeson and C.E. Schaeffer, J. Am. Chem. Soc., 107, 2780 (1985).
- 114. T. Saito and S. Sawada, Bull. Chem. Soc. Japan, 58, 459 (1985).
- 115. A.M. Bond, R. Colton, D.R. Mann and J.E. Moir, Austral. J. Chem., 39, 1385 (1986).
- 116. K.I. Hagen, C.M. Schwab, J.D. Edwards and D.A. Sweigart, Inorg. Chem., 25, 978 (1986).
- 117. M. Hidai, H. Matsuzaka, Y. Koyasu and Y. Uchida, J. Chem. Soc., Chem. Comm., 1986, 1451.
- 118. H.C. Jewiss, W. Levason and M. Webster, Inorg. Chem., 25, 1997 (1986).
- N. Juranic, M.J. Malinar, P.N. Radivojsa, I. Juranic and M.B. Celap, J. Serb. Chem. Soc., 51, 417 (1986).
- 120. W.H. Braunlin, C.F. Anderson and M.T. Record, Jr., Biochemistry, 26, 7724 (1987).
- P.A. Duffin, L.F. Larkworthy, J. Mason, A.N. Stephenson and R.M. Thompson, *Inorg. Chem.*, 26, 2034 (1987).
- 122. D.R. Eaton, R.J. Buist and B.G. Sayer, Can. J. Chem., 65, 1332 (1987).
- 123. H. Grahn, U. Edlund and T.A Holak, Magn. Reson. Chem., 25, 497 (1987).
- 124. H.C. Jewiss, W. Levason, M.D. Spicer and M. Webster, Inorg. Chem., 26, 2102 (1987).
- 125. S.M. Socol, S. Lacelle and J.G. Verkade, Inorg. Chem., 26, 3221 (1987).
- 126. V.P. Tarasov, S.A. Petrushin, M.A. Meladze and A.E. Shvelashvili, Koord. Khim., 13, 1384 (1987).
- 127. M. Watabe, Proc. XXVII ICCC (Nanjing), (Inorg. Chim. Acta, submitted for publication).
- 128. A. Yamasaki, N. Harashima and H. Shiraki, Rept. Univ. Electro-Commun., 37, 189 (1987).
- 129. M. Hirota, Y. Koike, H. Ishizuka, A. Yamasaki and S. Fujiwara, Chem. Lett., 1972, 853.
- A. Yamasaki, Y. Miyakoshi, M. Fujita, Y. Yoshikawa and H. Yamatera, J. Inorg. Nuclear Chem., 41, 473 (1979).